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ABSTRACT
Fine particulate matter (PM2.5) is a well-established risk factor for public health. To support both
health risk assessment and epidemiological studies, data are needed on spatial and temporal
patterns of PM2.5 exposures. This review article surveys publicly available exposure datasets for
surface PM2.5 mass concentrations over the contiguous U.S., summarizes their applications and
limitations, and provides suggestions on future research needs. The complex landscape of satellite
instruments, model capabilities, monitor networks, and data synthesis methods offers opportu-
nities for research development, but would benefit from guidance for new users. Guidance is
provided to access publicly available PM2.5 datasets, to explain and compare different approaches
for dataset generation, and to identify sources of uncertainties associated with various types of
datasets. Three main sources used to create PM2.5 exposure data are ground-based measurements
(especially regulatory monitoring), satellite retrievals (especially aerosol optical depth, AOD), and
atmospheric chemistry models. We find inconsistencies among several publicly available PM2.5

estimates, highlighting uncertainties in the exposure datasets that are often overlooked in health
effects analyses. Major differences among PM2.5 estimates emerge from the choice of data
(ground-based, satellite, and/or model), the spatiotemporal resolutions, and the algorithms used
to fuse data sources.

Implications: Fine particulate matter (PM2.5) has large impacts on human morbidity and mortality.
Even though the methods for generating the PM2.5 exposure estimates have been significantly
improved in recent years, there is a lack of review articles that document PM2.5 exposure datasets
that are publicly available and easily accessible by the health and air quality communities. In this
article, we discuss the main methods that generate PM2.5 data, compare several publicly available
datasets, and show the applications of various data fusion approaches. Guidance to access and
critique these datasets are provided for stakeholders in public health sectors.

PAPER HISTORY
Received April 6, 2019
Revised August 1, 2019
Accepted August 22, 2019

Introduction

Particulate matter (PM) is a well-established health risk
factor, with impacts on human morbidity and mortality
through cardiovascular (Brook et al. 2010) and respira-
tory diseases (Dominici et al. 2006; Ni, Chuang, and Zuo

2015; Wu et al. 2018), lung cancer and cardiopulmonary
mortality (Hoek et al. 2013; Pope et al. 2002), premature
births (Malley et al. 2017) and other types of diseases
(Lin et al. 2017; Tian et al. 2017). Particulate matter is
a combination of solid particles and liquid droplets that
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are suspended in the air, and they are typically classified
by aerodynamic diameter (EPA 2018a). Of these, health
studies have demonstrated that PM2.5 (i.e., particles that
are 2.5 µm or smaller in aerodynamic diameter) is of
particular concern for public health. PM2.5 also has
a lower rate of gravitational settling, so it can travel
long distances in the atmosphere and affect regions far
from the emission source, if not removed by precipita-
tion (Ouyang et al. 2015). In this study, we focus on
PM2.5, although many of the methodological issues rele-
vant to PM2.5 also relate to PM10 and, in some cases, gas-
phase pollutants as well.

Epidemiological and clinical studies have confirmed
an association between both acute and long-term expo-
sures to PM2.5 and adverse cardiorespiratory health
effects (Dominici et al. 2006; Peters et al. 2001; Pope
and Dockery 2006). PM2.5 was ranked the sixth highest
risk factor in the Global Burden of Disease estimates of
global premature mortality in 2016, and it was also
ranked first among all outdoor air pollutants (State of
Global Air 2018). In recent years, PM2.5 data have been
used for (1) epidemiological studies, which quantify
relationships between PM2.5 exposure and adverse
health outcomes, (2) health benefit assessments, which
combine pollution concentrations, population data,
baseline rates of adverse health outcomes, and concen-
tration-response functions from previously conducted
epidemiologic studies, to estimate the PM2.5-related
health burden, and (3) tools to support public health
interventions from episodic events such as wildfires and
dust storms, including inexpensive, rapid-response
health impact assessment tools (Anenberg et al. 2016).

In an annual trend analysis, the global and regional
emissions of PM species are often found to be correlated
with energy consumption (Klimont et al. 2017). In the U.S.,
anthropogenic emissions of PM2.5 from various sources
(i.e., stationary, mobile and fire sources) are documented
in the national emissions inventory report by EPA (EPA
2017). One unique example of fine particulate matter emis-
sion on a short timescale is wildfires. In the U.S., 69% of the
population were exposed to PM2.5 above 0.2 µg/m

3 due to
seasonal wildfire events (Munoz-Alpizar et al. 2017).
Inhalation of PM2.5 from wildfire smoke has been asso-
ciated with increased cardiopulmonary and cerebrovascu-
lar hospital admissions and emergency department visits in
affected communities (Gan et al. 2017; Rappold et al. 2011;
Wettstein et al. 2018), and studies show that wildfire smoke
may be a triggering factor for acute coronary events
(Haikerwal et al. 2015). Detailed evaluation has also been
done to investigate the mutagenicity and lung toxicity of
particulate matter from different fuel types and burning
phases of fires (Kim et al. 2018). More research progress on
wildfire health impact studies can be found in recent

reviews (Henderson and Johnston 2012; Liu et al. 2015;
Reid et al. 2016; Stefanidou, Athanaselis, and Spiliopoulou
2008).

In the U.S., compliance with the annual and daily (24
hr) average PM2.5 from the Environmental Protection
Agency (EPA) National Ambient Air Quality Standards
(NAAQS) is solely determined by ground-based regulatory
monitoring data. While PM2.5 is monitored in most large
U.S. cities, many parts of the U.S. have no ground-based
measurements of PM2.5 to assess health impacts (EPA
2018b). Even in areas with multiple ground-based PM2.5

instruments, there are challenges in extrapolating point-
based measurements to characterize regional air quality.
Local emissions and variations in geography can lead to
a high level of spatial heterogeneity in measurements, such
that two monitors near each other may reflect very differ-
ent PM2.5 levels. There is no consensus approach general-
izing point-based estimates to ascertain prevailing
population-level PM2.5 exposure over a community or
neighborhood. Furthermore, temporal variability, espe-
cially during episodic high exposure events such as wild-
fires that lead to short-term health-related effects, is an
important public health concern (Gan et al. 2017).

Satellite retrievals and atmospheric models have been
used to complement ground-basedmonitoring data, and to
estimate ambient PM2.5 levels in areas with no direct mea-
surements. Satellite instruments can provide information
on atmospheric or land-use characteristics associated with
air pollution levels but cannot measure near-surface PM2.5

in a manner directly comparable to measurements. Most
satellite aerosol products are integrated values from the
Earth’s surface to the top of the atmosphere. As a result,
these instruments cannot directly provide near-surface
PM2.5 but instead retrieve the “aerosol optical depth”
(AOD), which is defined as the light extinction due to
particles in the entire column of air.

The relationship between near-surface PM2.5 and satel-
lite data AOD is spatially and temporally heterogeneous.
Models that estimate the AOD-PM2.5 relationship may be
categorized as geoscience-based or statistical: geoscience-
based methods use atmospheric models to solve equations
of physical and chemical processes, which is a forward
approach to simulate the near-surface PM2.5 and AOD;
statistical models extrapolate data based on empirical asso-
ciations. In the case of PM2.5, both geoscience-based and
statistical methods have evolved as valuable approaches to
estimate ground-level concentrations in areas lacking direct
measurements. Geoscience-based models, also referred to
as chemical transport models, are used extensively to
inform air quality management programs in addition to
characterizing AOD-PM2.5 relationships. Here we review
estimates of spatially continuous PM2.5 data for the contig-
uous United States, and how these estimates were

1392 M. DIAO ET AL.



constructed using one or more of these three data sources:
measurements, satellite data, and models. Several previous
articles have reviewed technical methods to generate sur-
face PM2.5 data, including over regions with few monitors
(Zhang, Rui, and Fan 2018), from remote sensing techni-
ques (Chu et al. 2016;Hoff andChristopher 2009), and data
assimilation methods (Lynch et al. 2016). Here we focus
instead on existing data sources that are publicly available
and easily accessible by the health and air quality commu-
nities. The complex landscape of satellite instruments,
model capabilities, monitor networks, and data synthesis
methods offers opportunities at the spatial and temporal
scales of relevance to address questions of interest. Thus,
amain goal of this work is to present an array of options for
estimating near-surface PM2.5 using publicly available data-
sets, and provide guidance to new users to access and assess
these data. We extend a previous review by van Donkelaar
et al. (2010) that addressed the relationship between AOD
and measured PM2.5 (Engel-Cox et al. 2004; Wang and
Christopher 2003), meteorological factors (Gupta et al.
2006; Koelemeijer, Homan, and Matthijsen 2006; Liu et al.
2005), and the synthesis ofmultiple data sources on a global
basis. Specifically, we provide an overview of methods to
develop spatially continuous PM2.5 estimates (Section 2);
compare existing PM2.5 estimates for the contiguous
U.S. that have been used or cited in past studies, discuss
applications of satellite-derived data for wildfires and the
global burden of disease (Section 3); and finally summarize
the current status and future directions for PM2.5 estimates
(Section 4).

Overview of four basic types of PM2.5 datasets

We describe the generation and applications of four types
of PM2.5 datasets: 1) ground-based monitor data; 2)
ground-based monitor data merged with satellite
data; 3) ground-based monitor data merged with model
data; 4) ground-based monitor data merged with satellite
and model data. Indirect ground-based observations such
as visibility (Li et al. 2016) are not discussed here, nor are
short-term research field campaigns that offer extensive
data for individual regions over a period of days to
months.

Ground-based monitoring data

Over the U.S., extensive networks of ground-based
instruments operated by state, local and Tribal agencies
continuously monitor PM2.5. Measurements from these
monitors are archived by the U.S. EPA (https://www.
epa.gov/outdoor-air-quality-data) and are freely avail-
able, to support assessment at annual, daily, and often
hourly time scales. Spatially continuous real-time maps

can be viewed on the EPA AirNow website. These data
are used by cities, counties, states and the EPA to
determine compliance with the NAAQS, by atmo-
spheric modelers for model evaluation, and by health
researchers as input to epidemiological studies and risk
assessments. PM2.5 data from ground monitors can be
used to study correlations with adverse health impacts
using area-wide averaging or nearest-monitor exposure
assignments, such as a previous study of correlation
with daily mortality in six U.S. cities (Laden et al.
2000) and a study of the American Cancer Society
that links particulate air pollution and mortality
(Krewski et al. 2009). Alternatively, various interpola-
tion methods can be employed to create spatially con-
tinuous data fields, such as Land-Use Regression (LUR)
modeling, ordinary kriging interpolation, and inverse
distance weighted interpolation (Menut et al. 2013;
Zhang, Rui, and Fan 2018). Relative to other sources,
monitor data are often treated as the “gold standard,”
but the spatial coverage of pollution monitors limits the
application of these data for health assessment, and can
subsequently introduce errors where point-based moni-
tors are used to assess health over a wider domain
(Zeger et al. 2000). In certain cases such as Keller and
Peng (2019), spatial prediction models showed better
accuracy than monitoring averaging for exposure
assignment, although both methods have limitations.

Before 1999, all PM2.5 measurements were collected
using a filter-based method at 24 hr or longer time
averages. Since 1999, the EPA PM2.5 monitoring system
has been providing daily, continuous mass measure-
ments reported as hourly averages. Most PM2.5 moni-
tors either use the Federal Reference Method (FRM) or
the Federal Equivalent Methods (FEMs) (Noble et al.
2010). Many other types of ground-based monitors
exist beyond FRM and FEMs with varying levels of
measurement accuracy, and comparisons have been
made of the measurements among various instruments
(Allen et al. 1997; Chow et al. 2008; Hering and Cass
1999; Turpin, Huntzicker, and Hering 1994and refer-
ences therein). The aerosol water content in PM2.5 is
operationally defined, with dependence on both the
instrument and network. For example, filters collected
by the U.S. EPA are equilibrated at 30–40% (within
±5%) of relative humidity (RH) (Chow and Watson
1998), while the European standard is 50% RH
(European Committee for Standardization 1998).
Some instruments use heaters to evaporate aerosol
water that also evaporates semi-volatile material.
These different practices complicate comparison across
ground monitors and networks.

Related networks include the EPA Chemical
Speciation Monitoring Network (CSN, launched in
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2000) and the Interagency Monitoring of Protected
Visual Environments (IMPROVE) program (Malm
et al. 1994), which operates a network of ~170 PM
monitors primarily in U.S. Wilderness Areas and
National Parks. Both networks provide 24-hr average
PM2.5 concentrations, measured every three to 6 days,
where a chemical analysis is performed to identify the
elemental carbon, organic carbon, ammonium-sulfate,
ammonium-nitrate, sea salt, soil, and other trace con-
stituents. The field and laboratory approach is similar
for both networks, despite differences in sampling and
chemical analysis (Solomon et al. 2014).

In addition to the EPA monitors (typically located in
highly populated areas) and IMPROVE monitors
(located in rural background areas), temporary PM2.5

monitors are deployed as a part of the Wildland Fire
Air Quality Response Program (WFAQRP, https://wild
landfiresmoke.net/) during periods of wide-scale smoke
impacts from wildfire. The temporary monitors are
a mix of Environmental Beta Attenuation Monitors
(EBAMs) and E-Samplers manufactured by Met One,
Inc. The monitors are not FRM monitors, but can
provide real-time information about PM2.5 exposure.
They are often deployed in remote, small towns where
smoke impacts are heavy and other monitors do not
exist. A web-based monitoring data tool merges data
from these monitors with PM2.5 data from the EPA
AirNowTech system, providing time-series graphs and
data that are downloadable (see https://tools.airfire.org/
monitoring).

Data merged from ground monitors and satellites

Satellite remote sensing of AOD generally offers more
spatially extensive observational information than
ground-based PM2.5 measurements (except for regions
with perpetual issues due to cloud cover, snow cover,
bright surface, viewing geometry, etc.). In this way, satel-
lite data directly complement point-based estimates of
PM2.5 from monitors. Several studies have developed
linear regression models for estimating PM2.5 concentra-
tions from remotely sensed AOD (Al-Hamdan et al. 2009;
Gupta and Christopher 2009; Gupta et al. 2006;Wang and
Christopher 2003; Zhang, Hoff, and Engel-Cox 2009),
and others have added meteorological parameters to
develop multiple regression models or generalized addi-
tive models for surface PM2.5 (Hu et al. 2014a; Liu et al.
2007, 2005; Ma et al. 2014; Paciorek et al. 2008). Statistical
approaches often incorporate ancillary data, such as
meteorological fields, land use, and road density, to derive
surface PM2.5 based on merged data from ground moni-
tors and satellites. The relationships between satellite
retrievals of AOD and PM2.5 measured by ground

monitors are often evaluated by correlation coefficients
(R), which are based on estimates and observed values in
cross-validation exercise. The R values have been reported
to be sensitive to various geographical locations and show
large spatial and temporal variabilities (Hu et al. 2014a,
2014b; Kloog et al. 2014; Paciorek et al. 2008). In fact, the
performance of the derived PM2.5 in the statistical
approach relies on the availability, quality and the con-
sistency of both ground-based observations and ancillary
data, so past studies have typically been limited to a single
county or a group of U.S. states, e.g., in the southeast (Bi
et al. 2019; Hu et al. 2014a, 2014b; Lee et al. 2016) and
northeast (Kloog et al. 2014) U.S.

Despite the value of satellite data in providing spatial
coverage to complement information from point-based
monitors, satellite data have several limitations. In terms
of temporal coverage, the polar-orbiting satellites (e.g.,
MODIS, MISR, VIIRS, etc.) can only sample AOD at over-
pass times, once or twice a day or fewer (e.g., not over
cloudy or snow-covered regions). Only a few studies have
used instruments aboard geostationary satellites to exam-
ine surface PM2.5, such as the Geostationary Operational
Environmental Satellite (GOES) aerosol/smoke product
(GASP) (Liu, Paciorek, and Koutrakis 2009) and the
Korean Geostationary Ocean Color Imager (GOCI) AOD
product (Lennartson et al. 2018; Xiao et al. 2016; Xu et al.
2015). There are also issues with missing data in satellite
observations, particularly over clouds (Kokhanovsky et al.
2007) or other bright surfaces such as desert and coastline
(Remer et al. 2005). The fact that the missing AOD data is
not random poses challenges for identifying the most
impacted communities in health studies. Further compli-
cating the integration of AOD and surface PM2.5 is the
choice of satellite instruments (e.g., MODIS, MISR,
SeaWiFS, VIIRS, CALIOP, etc.) and their AOD retrieval
algorithms (e.g., Dark Target and MAIAC products for
MODIS, Deep Blue for MODIS and SeaWiFS, etc.). In
addition, the relative humidity of the atmospheric column,
the chemical composition, hygroscopicity and size distri-
bution of PM in the column, and the vertical distribution of
PM all affect the total uncertainty of the daily satellite-
derived ground-level PM2.5 (Ford and Heald 2013; Jin
et al. 2019a).

Data merged from ground monitors and model
simulations

Numerical models of atmospheric chemistry and trans-
port offer another powerful option for estimating near-
surface PM2.5. These models may be run at the global or
regional scale, often referred to as atmospheric chemical
transport models (CTMs) or photochemical grid models.
These models estimate the distribution of PM2.5 on grids
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whose horizontal resolution ranges from a few kilometers
(regionally) (McMillan et al. 2010; Vaughan et al. 2004) to
hundreds of kilometers (globally). Examples of regional
CTMs include the EPA Community Multiscale Air
Quality (CMAQ; www.epa.gov/cmaq) model and the
Ramboll Comprehensive Air Quality Model with
Extensions (CAMx; www.camx.com). Examples of global
CTMs include the GEOS-Chem model (Bey et al. 2001)
and the TM5 global chemistry transport model (Huijnen
et al. 2010; Van Dingenen et al. 2018). CTMs are used
extensively in applications requiring predictions for pol-
icy scenarios that cannot be directly monitored due to
their hypothetical nature.

Models calculate pollution concentrations over
a continuous spatial domain and time period, which
are free from spatiotemporal coverage limitations in
monitor and satellite data. Fusing model and observa-
tional data can help to leverage the accuracy of obser-
vational data as well as the spatial and temporal
coverage of models.

The EPA Fused Air Quality Surfaces Using
Downscaling (FAQSD) (EPA 2016) is one example of
the model-measurement data fusion. FAQSD constructs
a surface of spatially-varying regression coefficients by
comparing monitor data with modeled PM2.5 from the
CMAQ model. This surface of regression coefficients is
then interpolated spatially betweenmonitors and used to
create a fused daily surface PM2.5 exposure map
(Berrocal, Gelfand, and Holland 2010a, 2012, 2010b).
FAQSD has been shown to provide more accurate expo-
sure estimates (e.g., monitors withheld from the data
fusion process) than ordinary kriging of the observations
alone (Berrocal, Gelfand, and Holland 2010a, 2012). In
collaboration with EPA, the Centers for Disease Control
and Prevention (CDC) National Environmental Public
Health Tracking Network (EPHTN) has extended the
methods used for FAQSD to generate continuous
model-based estimates of surface PM2.5. The EPHTN
dataset (Centers for Disease Control and Prevention
2018) is available at the census tract and county-level
for the contiguous U.S. In addition to the publicly avail-
able data, numerous previous studies developed fusion
algorithms that combine surface measurements and
regional modeling (CMAQ) (Friberg et al. 2017, 2016;
Huang et al. 2018) to estimate speciated PM2.5 concen-
trations at regional to national scales within the U.S.

As necessarily simplified versions of the physical atmo-
sphere, models only represent spatial gradients on scales
larger than the model grid (i.e., 12 km for the FAQSD).
Areas with few or no monitoring sites are more sensitive
to the model and fusion method, potentially leading to
inaccuracies in the derived PM2.5 concentrations
(Berrocal, Gelfand, and Holland 2012).

Data merged from ground monitors, satellite data,
and model simulations

Since there are strengths and shortcomings associated with
groundmonitors, satellite data, andmodel simulations, one
method to estimate ground-level PM2.5 is to combine all
three of these sources to leverage the strengths of each one.
The incorporation of model data informs the vertical dis-
tribution of aerosols in the atmosphere, and the hygrosco-
picity and chemical speciation of ambient PM, both key
issues supporting the fusion of satellite AOD (column)with
monitor data (surface). For example, high AOD may be
indicative of either high levels of surface PM, or high levels
of PM aloft. In this example, AOD could not distinguish
between these two scenarios. The integration of model data
would address this problem, with the accuracy of the sur-
face products tied to the model simulations of aerosol
vertical profiles. This approach provides a basis for estimat-
ing surface PM2.5 from satellites, even in regionswith fewor
no ground-based monitors (van Donkelaar et al. 2010).

Due to the incomplete spatiotemporal coverage in
both monitor-based PM2.5 and satellite AOD observa-
tions, various approaches have been developed to fill in
the missing gaps. Some of them are individual methods
such as kriging interpolation and land-use regression
models, while other approaches are hybrid of multiple
individual methods, combining model simulations and/
or satellite AOD with monitor data. Two hybrid
approaches are widely used – the statistical and the
geoscience-based approaches. The Bayesian statistical
downscaling method is a typical statistical modeling
method that regresses PM2.5-AOD relationships and
downscales the coarser resolution grid-mean values to
locations at higher solutions (Berrocal, Gelfand, and
Holland 2012; Shaddick et al. 2018a, 2018b). The sta-
tistical modeling approach typically has lower compu-
tation cost and the ability to provide probabilistic
uncertainty measures for subsequent health effect and
impact studies.

The geoscience-based (also known as process-based)
approach predicts PM2.5 estimates based on monitor
data, satellite AOD, as well as PM2.5-AOD relationships
from model simulations. Such approach is more com-
putationally expensive, but usually provides higher-
resolution datasets (e.g., 1 km in Dalhousie data) than
the Bayesian statistical downscaling method (e.g.,
12 km in EPA FAQSD). A widely used global estimate
of ground-level PM2.5 incorporating data from moni-
tors, satellites, and an atmospheric model was devel-
oped by van Donkelaar et al. (2016). This dataset was
developed by combining AOD from multiple satellite
products (MISR, MODIS Dark Target, MODIS and
SeaWiFS Deep Blue, and MODIS MAIAC).
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A GEOS-Chem simulation of atmospheric aerosols
provides relationships between AOD and ground-level
PM2.5, which are further adjusted by a statistical dis-
tribution based on simulated aerosol speciation, eleva-
tion, and land-use information.

Another example of data assimilation of ground
monitor and satellite data into global modeling of
PM2.5 is the Modern-Era Retrospective Analysis for
Research and Applications, version 2 (MERRA-2), the
latest reanalysis using the Goddard Earth Observing
System, version 5 (GEOS-5) (Buchard et al. 2017).
MERRA-2 data assimilate AOD from bias-corrected
MODIS data, non-bias corrected MISR data and sun-
photometer measurements from Aerosol Robotic
Network (AERONET). In addition, the Navy Aerosol
Analysis and Prediction System (NAAPS) has been
used by the Naval Research Laboratory (NRL) to gen-
erate an 11-yr offline aerosol reanalysis by assimilating
quality-assured and controlled MODIS and MISR AOD
(Lynch et al. 2016). Other studies have developed
regionally specific algorithms to calculate near-surface
PM2.5. For example, Reid et al. (2015) used machine
learning to evaluate how various combinations of mon-
itoring data, AOD, model estimates, and auxiliary data-
sets (land-use, traffic, and meteorology) can be used to
improve the estimations of surface PM2.5 in Northern
California. Di et al. (2016a) used a hybrid model based
on neural network to assess PM2.5 exposures over the
U.S., and Beckerman et al. (2013) estimated the spatio-
temporal variability of PM2.5 in the U.S. using a land-
use regression model.

Two sources of error exist when inferring surface
mass abundance of PM2.5 from columnar AOD: uncer-
tainties in satellite observed AOD, and uncertainties in
modeled relationships between simulated PM2.5 and
AOD. Ford and Heald (2016) estimated the contribu-
tion of these values to uncertainties in the annual pre-
mature deaths associated with long-term PM2.5 to be
20% for the modeled PM2.5 – AOD relationship, and
10% for errors in the AOD retrieved from satellite
instruments, based on MODIS AOD Collection 6 and
0.5°×0.667° GEOS-Chem simulations over the U.S. and
China. When assimilating of AOD into model simula-
tions, the lack of information regarding aerosol specia-
tion and aerosol vertical distributions may lead to
degraded model performance (Buchard et al. 2017).
The added value of satellite data may depend on the
number of existing monitors, such as the case study of
Lassman et al. (2017) during the 2012 wildfire season in
Washington State, which found marginal improve-
ments by incorporating satellite data and model simu-
lations when numerous ground monitors are present,

compared with substantial improvements when fewer
monitors exist.

U.S. PM2.5 surfaces and health applications

Using the methods and data discussed above, multiple
research groups and agencies have developed PM2.5

exposure estimates. A comparison among several fre-
quently used, publicly available surface PM2.5 datasets
will be discussed, and examples will be given on how
they have been used for air quality and health
applications.

Major PM2.5 exposure datasets

Table 1 shows several datasets providing spatially contin-
uous PM2.5 fields over the U.S. Not all these data are
directly comparable, as they may be available for different
years or regions. We conduct an intercomparison of PM2.5

among four datasets for the overlapping year of 2011: CDC
WONDER (Wide-ranging Online Data for Epidemiologic
Research), CDC National Environmental Public Health
Tracking Network (EPHTN, also mentioned above),
Dalhousie University’s Atmospheric Composition
Analysis group data (hereby referred to as the Dalhousie
data for brevity), and the ground-basedmonitor data (AQS
+ IMPROVE). The goal of this section is to provide exam-
ples on the existing large spatial variabilities in publicly
available PM2.5 products. In fact, even though ground-
based monitor data have been fused in CDC WONDER,
EPHTN and Dalhousie data, there are still large differences
among these datasets. We chose to intercompare their
county-mean values at geocoded-address level for consis-
tency among methods, since CDC fields were only avail-
able at the county-level.

The CDC WONDER data (Figure 1a) were developed
by Al-Hamdan et al. (Al-Hamdan et al. 2014, 2009) using
satellite AOD from MODIS and PM2.5 from EPA moni-
tors, and weremade available through the CDCWONDER
website (http://wonder.cdc.gov/). CDC WONDER data
were generated based on a regression model that derives
surface PM2.5 from satellite-based columnar AOD, and
a B-spline smoothing model that generates 10-km resolu-
tion, daily, spatially continuous PM2.5 surfaces for the con-
tiguous U.S. by using combined AQS monitor PM2.5

measurements and bias-corrected MODIS satellite-
estimated PM2.5 (Al-Hamdan et al. 2014, 2009). This data-
set provides daily PM2.5 data at the county scale for the
continental U.S. in 2003–2011, easily accessible from
a menu-driven online system operated by the CDC. This
national PM2.5 dataset in CDC WONDER allowed public
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health researchers and policymakers to effectively include
air pollution exposure data in the context of health-related
data available in the WONDER online system and other
health data systems, and link these exposure data with state
and county public health datasets throughout the conti-
nental U.S. The CDC WONDER data have been used to
study associations between PM2.5 air pollution and several
adverse health effects, such as risk of sepsis hospitalization

(Sarmiento et al. 2018), risk of stroke (McClure et al. 2017),
incident coronary heart disease (Loop et al. 2018), incident
cognitive impairment (Loop et al. 2013), cancer incidence
of respiratory system (Al-Hamdan et al. 2017), cardiovas-
cular disease mortality (Al-Hamdan et al. 2018a), and risk
of autism spectrum disorder (Al-Hamdan et al. 2018b).
Evaluation of the PM2.5 estimates from CDC WONDER
found a much stronger correlation with ground-based PM

Table 1. A summary of the publicly available PM2.5 exposure datasets.
Source of
Dataset Region

Time
Period Spatial Resolution

Temporal
Resolution Monitor Model Satellite Reference

1 GBD Global 1990–2013 *0.1°× 0.1° Annual X X X Brauer et al. (2016)
2 Dalhousie

Dataset V4.
GL.02

Global 1998–2016 1 km2 Annual X X X (1)

3 GBD Global 2014 *0.1°× 0.1° Annual X X X Shaddick et al. (2018a)
4 Berkeley Earth Global 2016–2017 *0.1°× 0.1° Daily X X (2)
5 Dalhousie

Dataset V4.
NA.02

CONUS 2000–2016 1 km2 Annual X X X (1)

6 EPA AirData CONUS 1999–2018 Point data; also available when
averaged on county scale

Daily X (3)

7 EST 2013 CONUS 2001–2006 8.9 km2 Monthly X X X Beckerman et al. (2013)
8 CDC EPHTN CONUS 2001–2015 County and census tract Daily X X (4)
9 EPA FAQSD CONUS 2002–2015 12 km2 Daily X X (5)
10 CDC WONDER CONUS 2003–2011 County Daily X X (6)
11 AQAH 2018 NC, USA 2006–2008 12 km2 Monthly & Annual X X Huang et al. (2018)

Notes. Table 1 shows spatially continuous PM2.5 exposure datasets that are publicly available and free on individual websites or publications. The URLs of the
datasets are listed below. *At mid-latitudes, 1° is approximately 100 km.

(1). Dalhousie University Datasets: http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
(2). Berkeley Earth Air Quality Map: http://berkeleyearth.org/air-quality-real-time-map/
(3). AirData Dataset: https://www.epa.gov/outdoor-air-quality-data/download-daily-data
(4). CDC EPHTN: https://ephtracking.cdc.gov/DataExplorer/#/
(5). EPA FAQSD Dataset: https://www.epa.gov/hesc/rsig-related-downloadable-data-files
(6). CDC WONDER: https://wonder.cdc.gov/nasa-pm.html

Figure 1. County-level maps of annual mean PM2.5 in 2011 using: (a) CDC WONDER, (b) EPHTN, (c) Dalhousie data (V4.NA.02), and (d)
EPA AQS and IMPROVE fused data. White spots on the map represent “no data available”.
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over the eastern and the midwestern United States than
those over the western United States (Al-Hamdan et al.
2014). This same pattern is evident in comparing CDC
WONDER for 2011 in Figure 1a with county-average
monitoring data in Figure 1d. A potential cause for the
performance differences between the eastern and western
United States in CDC WONDER data is the B-spline
smoothing method, which results in relatively higher pre-
dicted values particularly when ground monitors are
sparse. When using a different smoothing method – the
inverse distance weighted method, PM2.5 surface estimates
in California showed lower maximum values at county-
level than the B-spline method (http://www.met.sjsu.edu/
weather/HAQAST/).

Figure 1b shows surface PM2.5 from the CDC
EPHTN, produced by the National Environmental
Public Health Tracking Program in collaboration with
EPA (EPHTP, also known as the Tracking Program),
and based on Bayesian space-time downscaling
(Berrocal, Gelfand, and Holland 2010a, 2010b, 2012).
The EPHTN PM2.5 data were previously used in epide-
miology studies that track associations between PM2.5

concentrations and a series of adverse health outcomes,
including asthma-related emergency department visits,
respiratory emergency department visits (Strosnider
et al. 2019), exacerbation of existing asthma
(MirabelMirabelli et al. 2016), cardiovascular chronic
diseases (Weber et al. 2016), chronic kidney disease and
end-stage renal disease (Bowe et al. 2018). In addition,
the PM2.5 estimates from EPHTN data were incorpo-
rated in a distributed lag nonlinear model when asses-
sing the association between extreme heat and
hospitalizations (Vaidyanathan et al. 2019). Although
satellite data have not been incorporated into the
EPHTN data, the Tracking Program partnered with
NASA and Emory University to enhance spatial cover-
age of PM2.5 in the southeast U.S. (Hu et al. 2014a), and
evaluated various satellite-based data products for char-
acterizing adverse health impacts resulting from wild-
fire smoke PM2.5 (Gan et al. 2017). One feature of the
EPHTN data is the relatively high concentrations in the
western U.S. compared with the Dalhousie and AQS
+IMPROVE fields in Figure 1. This difference is likely
because EPHTN data used AQS monitors but not
IMPROVE monitors in the fitting. PM2.5 concentra-
tions in the rural areas may be overestimated when
rural, low-concentration measurements from the
IMPROVE network are not used, and the predictions
are based on interpolation of fits from AQS monitors in
urban areas.

Figure 1c shows 2011 surface PM2.5 fields from the
Dalhousie data, which are based on models, satellites,
and ground monitors. The data shown in Figure 1c are

from V4.NA.02, and the data products are continually
updated. van Donkelaar et al. (2010) describe the first
global satellite-derived PM2.5 dataset (V1.01), with subse-
quent datasets including additional satellite products
(V2.01 (van Donkelaar et al. 2013)) and extending the
time period of data availability (V3.01 (van Donkelaar
et al. 2015)). The version shown in Figure 1c was devel-
oped for North America using AOD retrievals from mul-
tiple satellite products, combined with a GEOS-Chem
simulation at 0.5°×0.67° resolution, and incorporation of
local ground-based monitors through statistical fusion
(V4.NA.02; (van Donkelaar et al. 2019)). This regional
version builds upon updates made during development of
the global product (V4.GL.02 (van Donkelaar et al. 2016))
that combine AOD frommultiple satellite products based
upon their relative uncertainties. The resultant 1-km
PM2.5 estimates are highly consistent (the spatial coeffi-
cient of determination (R2) = 0.81) with global out-of-
sample cross-validated PM2.5 concentrations from
ground-based monitors. A variant of these data is also
available (with similar performance) for the year 2014
(Shaddick et al. 2018b) as used in the GBD (Cohen et al.
2017). These datasets are currently being updated with
newer satellite products, updated models, and new mon-
itoring networks (Snider et al. 2015). The Dalhousie V4.
NA.02 data for 2011 shown in Figure 1c capture the
spatial gradients of the county-level monitoring data in
Figure 1d. The Dalhousie data seem to show the best
agreement with the AQS+IMPROVE data in the remote
areas of the western U.S. and New England, which is
consistent with another comparison study (Jin et al.
2019b). This feature indicates that incorporating satellite
data can be valuable for improving estimation of PM2.5

concentrations in remote areas where monitor coverage is
sparse.

For comparison, Figure 1d shows a fusion of EPA
AQS PM2.5 and IMPROVE PM2.5 allocated to the
county scale (i.e., data within the same county are
averaged to a single county-mean value). The two data-
sets were combined to provide a more comprehensive
representation of both urban and rural areas in the
United States. For EPA AQS PM2.5, only counties with
PM2.5 concentrations collected over four complete
quarters in 2011 were chosen, and averaged to estimate
an annual value. For IMPROVE PM2.5, monitor loca-
tions were matched with county Federal Information
Processing Standards (FIPS) code and county-mean
values were calculated. Then, the EPA AQS PM2.5 and
IMPROVE PM2.5 were fused, that is, when both AQS
and IMPROVE monitors occurred within a county,
measurements from these two networks were averaged
to derive the county mean. The agreement between the
fused data fields (Figure 1a–c) with AQS-IMPROVE
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fused data (Figure 1d) may relate to the weight given to
local data in the data fusion algorithm, and/or to the
representativeness of a PM2.5 monitor for a county
average. Nevertheless, comparisons with observations
can be useful for identifying differences among datasets
based on quantitative evaluation metrics.

Figure 3a compares the frequency distributions of
the three datasets with respect to the AQS-IMPROVE
fused data. CDC WONDER consistently shows higher
values than the other datasets. The Dalhousie dataset
exhibits lower values of PM2.5 overall with the widest
frequency distribution (largest standard deviation in
Figure 3b).

Results from our analyses of county-mean PM2.5 esti-
mates in 2011 are summarized in Table 2. The minimum
annual county-level mass concentrations of PM2.5 for
CDC WONDER, EPHTN and Dalhousie are 7.2 μg/m3,
4.4 μg/m3 and 3.3 μg/m3, respectively, with the CDC
WONDER’s minimum being the highest. Maximum
values in each of the three datasets are similar (CDC
WONDER: 14.9 μg/m3; EPHTN: 16 μg/m3; Dalhousie:
13.4 μg/m3). R2 and the normalized mean bias based on
standard formula (EPA 2018c) are calculated. Figure 2
shows the linear regression slope and intercept values.
CDC WONDER exhibited the lowest R2, 0.106, out of
all the three datasets to averaged county-level AQS-
IMPROVE fused data during a county-mean to county-
mean comparison, and the highest normalized mean bias
of 33.3%. But as for the grid-level validation, the valida-
tion of CDCWONDER’s surfacing algorithm showed an
R2 of 0.88 and RMSE of 1.6 μg/m3 for the Southeastern
U.S., by comparing with EPA AQS monitors collocated
with the grid cells of estimates (Al-Hamdan et al. 2009).
CDC EPHTN demonstrated an R2 of 0.649 and normal-
ized mean bias of 12.2%. The Dalhousie dataset shows R2

of 0.693 and normalized mean bias of 1.6% if the satellite-
based data are sampled coincidentally at monitor loca-
tions from both the EPA AQS and IMPROVE networks
before averaging by county and comparing, but degrades
to an R2 of 0.647 and normalized mean bias of −3.3% if
county-level averages are taken before comparing with

the in situ monitor data, and degrades still further to an
R2 of 0.527 and normalized mean bias of −9.2% if county-
level averages are taken before comparing with the in situ
monitor data and if the IMPROVE data are also excluded.
The reduced agreement implies caution when using
a limited number of primarily urban ground-based moni-
tors to represent county averages, and motivates consid-
eration of more spatially representative information such
as from satellite and models as reviewed here. When
further restricting the linear regression analyses to PM2.5

< 15 μg m−3 only, the R2 values for CDC WONDER and
Dalhousie data only increase slightly, while the R2 value
for EPHTN remains the same.

This comparison highlights the importance of metho-
dology in estimating PM2.5 surfaces. All three datasets used
data from the EPA AQS; two used satellite AOD from the
MODIS instrument; and two used advanced computer
models. However, the results among these vary widely,
and can be sensitive to assumptions about the spatial scale
represented by individual PM2.5 monitors. This compari-
son is limited to county averages of annual mean for 2011
and to only those counties with data availability over four
complete quarters; so more extensive inter-comparison of
PM2.5 surfaces (including daily, grid-level and county-level
comparisons for more counties and years) in future studies
would provide helpful information to health and air quality
organizations in selecting the appropriate data set for new
applications.

PM2.5 concentrations in global-scale estimates

The highest profile application of satellite-derived PM2.5

fields has been the Global Burden of Diseases, Injuries,
and Risk Factors Study (GBD). The GBD project continu-
ally evaluates PM2.5 exposure using a consistent, globally
applicable method representing the current state-of-the-
science of data fusion of satellite, model, and monitor data.

For the 2010 GBD results reported in Lim et al.
(2012), the PM2.5 concentration estimates are described
in Brauer et al. (2012) who used an average of satellite-
derived PM2.5 (van Donkelaar et al. 2010) and model

Table 2. Summary of county-average 2011 annual mean PM2.5 estimates of AQS+IMPROVE fused data, CDC WONDER, EPHTN and
Dalhousie data in contiguous U.S.
PM2.5 data AQS+IMPROVE CDC WONDER EPHTN Dalhousie

Minimum PM2.5 value (μg/m3) 1.7 7.2 4.4 3.3
Maximum PM2.5 value (μg/m3) 20.4 14.9 16.0 13.4
R2 * 0.106** 0.649 0.647
R2 * for PM2.5 < 15 μg m−3 only 0.136** 0.649 0.662
Normalized mean bias * 33.3%** 12.2% −3.3%
Number of samples used in analysis 544 3102 3104 3104

Notes. *R2 and normalized mean bias are calculated based on county-mean to county-mean comparison with respect to AQS+IMPROVE data of 2011 annual
mean.

**This is based on county-mean to county-mean comparison, but as for the grid-level validation, the surfacing algorithm that was used to create the CDC
WONDER dataset was also validated on the grid level for the Southeastern US that showed an R2 of 0.88 and RMSE of 1.6 μg/m3 (Al-Hamdan et al. 2009).
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(Van Dingenen et al. 2018) estimates that were recali-
brated to align with in situ monitor data. For the 2013
GBD outcomes reported in Forouzanfar et al. (2015),
PM2.5 estimates from Brauer et al. (2016) were used
that were based on a broader blend of satellites,
a different modeling approach (Van Dingenen et al.
2018; van Donkelaar et al. 2015) and calibration against
global monitoring data. More recently, the GBD 2015
results reported in Cohen et al. (2017) and Forouzanfar
et al. (2016) used PM2.5 concentrations estimated using
significant methodological advances (Shaddick et al.
2018b; van Donkelaar et al. 2016). Rather than relying
on a single global function to combine information
from the different data sources (satellite-derived pro-
duct, model, and in situ monitor data), a Bayesian
hierarchical model was used to combine multiple
streams of information with calibration coefficients
defined at the country-specific scale (where possible).
This allowed the final estimate to more heavily weigh
the data source that yielded the most accurate PM2.5

estimates (as evaluated through out-of-sample cross-
validation) in different regions of the world.

The GBD 2016 results reported in Gakidou et al.
(2017) continue to use a Bayesian hierarchical model to
fuse geophysical satellite-derived PM2.5 estimates (V4.
GL.02.NoGWR (van Donkelaar et al. 2016)) with in situ
PM2.5 and PM10 monitor data, using predictors, modeled
aerosols from the global GEOS-Chem model, a factor
related to elevation and urban proximity, and random
effects and correlations across these terms (Shaddick
et al. 2018a). Overall, the R2 compared to out-of-
sample cross-validation measurement increased from
0.64 to 0.91, and the root-mean-square error (RMSE)
estimates reduced from 23 μg/m3 to 12 μg/m3, compared
to GBD 2013 estimates (Shaddick et al. 2018a).

Besides differences of PM2.5 estimates in different stu-
dies, the estimates of global exposure mortality can be
affected by other factors such as causes of death being
considered, regions being considered, and whether part of
the PM2.5 impact is being categorized as from indoor or

Figure 2. Scatter plots of publicly available surface PM2.5 datasets – (a) CDC WONDER, (b) EPHTN, and (c) Dalhousie (V4.NA.02) versus
AQS+IMPROVE fused data. All data represent county-average 2011 annual mean. Two linear regressions are calculated: one for all
data (top text box, red solid line showing this fit) and one for PM2.5 < 15 μg m-3 only (bottom text box). Black solid line stands for
1:1 line. The value of a and b represent intercept and slope of the linear regression, respectively. The ±1σ stands for ± one standard
deviation. The number of samples used for linear regression in (a), (b) and (c) are 543, 544 and 544, respectively.
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outdoor PM2.5 sources. For example, compared with the
GBD studies, Burnett et al. (2018) used a different
model – the Global Exposure Mortality Model (GEMM)
to estimate association between outdoor PM2.5 and non-
accidental mortality, and predicted 8.9 million [95% con-
fidence interval (CI): 7.5–10.3] deaths globally in 2015,
which is 2.2 times of the prediction in the GBD
(4.0 million; 95% CI: 3.3–4.8) (Forouzanfar et al. 2016).

Species and source-specific exposure estimates

Recently, an interest in identifying characteristics of
PM2.5 associated with health risks beyond total mass
concentration has surged in the health and air quality
fields, but progress is limited by robust evidence for the
impact of PM2.5 composition or emission sector on
health outcomes (Kioumourtzoglou et al. 2015).
A challenge in identifying such relationships has been
the limited availability of species and source-specific
exposure estimates. A review of Bates et al. (2019)
summarized the recent progress for particle-bound
reactive oxygen species (ROS) and oxidative potential
(OP) measurement techniques. They discussed the
compositional impacts on OP as well as health effects
and highlighted the importance of specific emission
sources including metals, organic carbon, vehicles,
and biomass burning to OP. When there is a lack of
measurements of OP at various times and locations,
modeling approaches such as land-use regression and
source impact regressions are often used (Bates et al.
2015; Fang et al. 2016; Yang et al. 2016). While models
can be used to estimate species and sector-specific
PM2.5 exposures, model biases, limited resolution, and
other uncertainties still limit the accuracy in model-
based exposure estimates.

A number of different research groups have fused
models with satellite and/or ground-based measure-
ments, as discussed above. This same approach can be
extended to the chemical speciation of aerosols avail-
able in models. For example, Ivey et al. (Ivey et al. 2015,
2017) used a combination of model sensitivity analysis
and receptor modeling at monitor locations to estimate
source contributions to total PM2.5 from 20 different
sources, including contributions from inorganic aerosol
species and metals. Zhai et al. (2016) investigated
mobile source contributions to air pollution concentra-
tion fields including PM2.5 at 250-m fine resolution
using a calibrated dispersion model and ground moni-
tor data. Their results were applied to the estimation of
prenatal exposure (Pennington et al. 2017) and child-
hood asthma outcomes (Pennington et al. 2018) due to
traffic air pollution. Lee et al. (2015) used
a combination of global adjoint sensitivity modeling
and satellite-derived PM2.5 concentrations to estimate
the emitted species contributing to the global total
premature deaths associated with long-term exposure
to PM2.5. Rundel et al. (2015) fused monitoring data
and CMAQ output and provided summaries of five
major PM2.5 species for the continental U.S., including
sulfate, nitrate, total carbonaceous matter, ammonium
and fine soil/crustal material. Li et al. (2017) used
a combination of global modeling (GEOS-Chem) and
satellite-derived PM2.5 concentrations to estimate
trends in population-weighted speciated PM2.5 concen-
trations worldwide. The species considered were sul-
fate, nitrate, ammonium, organic aerosol, black carbon,
dust, and sea salt, and these were evaluated in compar-
ison to speciated in situ ground monitor measurements
in the U.S. The relative trends agreed to within a -
few percent in terms of the relative trends for most
species, with the largest differences being those for

Figure 3. (a) Frequency distributions of the county-average 2011 annual mean PM2.5 mass concentrations for the four data sets
shown in Figure 1. (b) Mean (triangles), median (horizontal bar in the middle), 25 and 75 percentiles (bottom and top of the box,
respectively) for the four data sets. Black dots represent outliers.
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natural components (sea salt and dust). Di, Koutrakis,
and Schwartz (2016b) calibrated GEOS-chem model
simulations using ground monitoring data and pre-
dicted 1 km × 1 km resolution PM2.5 speciation data
on daily basis in northeastern U.S. Additionally, van
Donkelaar et al. (2019) directly extend the Dalhousie
University satellite-derived PM2.5 methodology to
include estimates of chemical composition. Across all
species, the agreement with speciated measurements in
North America had an R2 that ranged from 0.57 to
0.96, and a slope from 0.85 to 1.05, with generally the
best agreement for sulfate, ammonium, and nitrate (R2

between 0.86 and 0.96, slope between 0.99 and 1.01).
The upcoming MAIA (Multi-Angle Imager for

Aerosols, preformulation ~2021) satellite-based remote
sensing instrument will make radiometric and polari-
metric measurements to better derive aerosol composi-
tion from space, helping to provide additional records
of species and source-specific PM2.5 to health research-
ers in several major urban areas worldwide (Diner et al.
2018).

Improved species and source-specific PM2.5 sur-
faces will be of value for several reasons. For exam-
ple, they can assist in the refinement of
concentration-response relationships for epidemiolo-
gical studies of the health impacts posed by particu-
late exposure. In addition, they can assist in
identifying the PM2.5 components or the emission
sectors (e.g., transportation versus power generation)
most responsible for PM2.5’s toxicity.

Data assimilation and forecasting for episodic air
pollution events

To date, most of the applications of data fusion among
ground-based monitors, satellites, and/or model simula-
tions were to support public health assessment retrospec-
tively, since the measurements are only available for the
past. To project future air quality, a conventional method is
the “relative response factor” approach (EPA2018d), which
multiplies a base year’s fused concentration field by the
ratio of the CMAQ model predictions between the future
and base years. Such method has been applied to system
development for meeting the NAAQS (Kelly et al. 2019) as
well as impact analysis (EPA 2012). However, there is clear
potential to extend data fusion approaches to air quality
forecasting, using satellite and ground-based data as initial
conditions assimilated into the models. Health-based PM
forecasts tracking smoke fromwildland fires are one exam-
ple of the application of data assimilation.

Wildfires are becoming increasingly important sources
for PM2.5 pollution hazards due to the large quantity of
emissions (Larkin, Raffuse, and Strand 2014), the acute
episodic nature of the events, the difficulties associated
with controlling them, and impacts of a changing climate
(Spracklen et al. 2009). In particular, for the Northwest
U.S., a positive trend was found in the 98th percentiles of
PM2.5 due to the increasing total areas burned by wild-
fires. This is in contrast to the decreasing trend of PM2.5

in the other areas in the contiguous U.S. (McClure and
Jaffe 2018). Several previous studies examined the adverse
health effects from exposure to wildfire smoke in previous
years based on observations and simulations. Rappold
et al. (2017) used CMAQ model simulations with and
without wildland and prescribed fires from 2008 to 2012
to quantify contribution of fire emissions to the ambient
PM2.5 levels. Their results showed that 30.5 million people
in the U.S. lived in the areas where fire-emitted PM2.5 is
a large component of annual average value. Similarly,
Fann et al. (2018) used CMAQ model simulations to
assess the health impacts and economic value of wildland
fire episodes in the U.S. from 2008 to 2012.

Compared with the retrospective analysis, the future-
oriented forecasts for PM2.5 emission from wildfire are
even more challenging. Because of the episodic nature of
wildfire emission, the forecasts would require daily or
even hourly PM2.5 estimates, rather than the annual expo-
sure fields used in health studies like the GBD. In addi-
tion, fires typically occur in regions away from major
cities where ground-basedmonitoring data are not always
available, which imposes challenges on data assimilation.

There are multiple smoke forecasting systems in the
U.S., all of which use models to provide future estimates
of ground-level PM2.5. Currently, satellite data are used in
these systems to inform the location, timing, and char-
acteristics of fire. Fire detection characteristics are com-
bined with land cover data to calculate emissions into the
model, and satellite AOD is used to evaluate model per-
formance (Chen et al. 2008; Draxler and Hess 1998;
Herron-Thorpe et al. 2012; Larkin et al. 2009; Schroeder
et al. 2008; Stein et al. 2015; Vaughan et al. 2004).

Among these smoke forecasting systems, themost direct
integration of satellite AODandwildland smoke prediction
is performed by the Wildland Fire Air Quality Response
Program (WFAQRP), which has been developed to address
smoke issues from wildfires, bringing the latest in fire
emissions and smoke transport science to Incident
Management Teams, health and air quality agencies, and
ultimately the public. This program provides smoke fore-
casting expertise, deploys temporary PM2.5 monitors to
augments existing monitoring systems, and communicates
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information on how to protect oneself from smoke. A daily
Smoke Outlook is produced, forecasting expected smoke
behavior and level of impact in the region of the fire (Figure
4). These smoke outlooks are initialized with a statistical
model incorporating MODIS AOD and surface PM2.5

monitoring data to forecast the AQI for the next day
(Marsha and Larkin 2019).

Discussion and conclusion

Remaining barriers for obtaining and applying
PM2.5 exposure for health applications

This review discusses the methods, sources, and appli-
cation of spatially continuous PM2.5 datasets derived
from combinations of ground-based data, satellites,
and/or atmospheric models. The data fusion products
leverage the benefits of each data source, providing
PM2.5 exposure estimates over continuous spatial
scales. This new resource for air quality data has
already been used for health assessments, and has
potential for application to research, public outreach,
and environmental management. Nevertheless, several
challenges remain in obtaining and applying PM2.5

exposure for health applications. For example, missing
data coverage in both ground monitors and satellite
observations requires additional efforts for merging
multiple data sources or interpolating data in space
and time. When choosing the methods for data fusion
or interpolation, users often need to weigh between
the advantages and disadvantages of different meth-
ods. One may choose the efficient calculation of the
Bayesian statistical downscaling method for lower spa-
tial resolution (such as 12-km resolution in Wang
et al. (2018)), while others may choose the more com-
putational expensive methods that combine CTM,
satellite and ground monitors (van Donkelaar et al.
2019), or machine learning techniques (Di et al. 2019;
Hu et al. 2017; Reid et al. 2015). Methods that incor-
porate dispersion modeling may also be useful in some
applications (Ahangar, Freedman, and Venkatram
2019; Scheffe et al. 2016). Depending on the methods
being used in data fusion, assimilating the ground
monitor data does not guarantee similar output of
surface PM2.5, as demonstrated in our case study of
four datasets in Section 3.1. Such variability among
publicly available datasets calls for more intercompar-
ison studies to contrast and explain their differences.
Future intercomparison studies are recommended to
isolate individual factors contributing to comparison
results, including but not limited to spatiotemporal
variabilities of surface PM2.5 (e.g., seasonal variability,
topography, eastern versus western U.S.), data sources

being used (model, satellite and/or monitors), regres-
sion of AOD – PM2.5 relationships, representativeness
of ground monitor data (e.g., weighting functions of
monitors over a larger scale), spatial and temporal
resolutions, etc. As end users of these PM2.5 datasets,
researchers in public health should be mindful that the
agreement between fused PM2.5 data and monitored
PM2.5 evaluated by R or R2 are affected by multiple
factors and assumptions being used in such evaluation
(e.g., representativeness of monitor data, spatiotem-
poral interpolation, data resolutions, etc.). Varying
sampling schedules for networks (i.e., higher fre-
quency in urban areas versus lower frequency in
rural areas) create another challenge when using
ground monitor data as the gold standard, particularly
for developing daily concentration fields. On days
without rural sampling, predicted concentrations in
rural areas might be overestimated because they are
based on fits to predominantly urban monitoring. One
way to combat this is to perform fusion on longer
term monitor averages (monthly, quarterly, etc.). We
recommend that researchers from both communities
(i.e., data development and public health sectors) work
together when applying the PM2.5 estimates into
health impacts assessments and/or air quality manage-
ment actions. One example is to guide the model
evaluations by the usage of PM2.5 fields in health
studies, which may be focused on a specific concen-
tration range (e.g., lower concentrations in the rural
areas versus higher concentrations in the urban areas),
or a specific population. These specific targets may not
be thoroughly tested by national or regional cross-
validation.

Web-based tools for PM2.5 exposure analyses

Despite the benefits of these data and the rapidly
advancing research in this area, there are several key
steps toward wider utilization of these data. One key
step is to downsize spatially continuous data based
on the types of applications. Although research
groups may provide global or national data, most
users require a small subset of data over a particular
region and time period. Online mapping tools and
options that allow users to subset data prior to
download can significantly reduce the data manage-
ment burden on users. Another key step is to main-
tain and foster training tutorials and seminars on
specialized mapping software. For instance, the
NASA Applied Remote Sensing Training (ARSET)
program has been providing in-person and online
tutorials for these purposes since 2009 (NASA
2019).
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Several web-based tools are available for analyzing and
predicting PM2.5 exposure. The EPA Remote Sensing
Information Gateway (RSIG), developed by U.S. EPA in
collaboration with NASA, allows rapid retrieval and sub-
setting of satellite, model and ground-based data relevant
to air quality. The RSIG website can be accessed at:
https://www.epa.gov/hesc/remote-sensing-information-
gateway, which provides multi-source, daily PM2.5 data at
up to 12-km horizontal resolution. Users can select only

the subset of data needed for a particular application to be
downloaded. RSIG can also combine multiple variables to
simplify the burden of data analysis on the user. For
example, if one is interested in comparing
CMAQ-modeled PM2.5 with AQS observations, the AQS
observations can be subsetted and regridded to the model
grid by specifying the model configuration (e.g., domain
range, projection, resolution) (EPA RSIG 2019). As of
April 2018, multiple PM2.5 datasets are available from

Figure 4. An example of a smoke forecast issued for local communities by the Wildland Fire Air Quality Program. Example is from
the river fire and ranch fire in the mendocino national forest issued for portions of Northern California and the Sacramento Valley
area, California on August 9, 2018.
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RSIG, including the EPA AQS in-situ monitor data, stan-
dard CMAQ model simulations over the continental
U.S. conducted by the U.S. EPA, the FAQSD, and the
combination of ground-based monitor and model data
used by the CDCEPHTN. In addition, RSIG also provides
up-to-date NASA MODIS AOD, and the National
Environmental Satellite, Data and Information Service
(NESDIS) Biomass Burning Emissions Data.

The University of California Berkeley’s Earth Air
Quality Map (http://berkeleyearth.org/air-quality-real-
time-map/) provides near-real-time maps of AQI
values for PM2.5 concentrations in the U.S. and several
countries and regions outside of U.S. (e.g., China,
Canada, Europe, etc.) at 0.1-degree resolution. As spe-
cified on the website, preliminary data from surface
station measurements are being used with automated
quality control procedure, and interpolated based on
kriging method. Daily maps of PM2.5 AQI values are
available to download from June 2016 to March 2017.

When data are mapped through a web application, it
can significantly reduce the burden of creating a map or
plot. However, users often want the ability to create maps
in a standard software platform to integrate with other
aspects of their work. Currently, the netCDF is the most
common format for atmospheric data, including PM2.5

surfaces. Many programming languages, such as Python,
the Interface Definition Language (IDL), MatLab, and the
free National Center for Atmospheric Research (NCAR)
Command Language (NCL) support netCDF data.
ArcView GIS also supports netCDF, but users may have
difficulty plotting large netCDF files in GIS. Because GIS
platforms are so widely used among health, land planners,
and policy communities, we recommend that data provi-
ders also include the standard release of GIS shapefiles as
a distributed data format. Typically, shapefiles provide
data in political or geographic spatial domains (e.g.,
U.S. counties or census tracts) rather than the grid format,
which is typically used in atmospheric research.

Ongoing and future research efforts

Besides providing more guidance on the tools to poten-
tial users, improved utilization of PM2.5 exposure data-
sets can be supported by increased validation. Because
ground-based monitors, satellites, and models are often
combined to estimated surface PM2.5, there are few
independent data sources for validation. A recent
study over New York State uses independent ground-
based observations from the New York City
Community Air Quality Survey (NYCCAS) Program
and the Saint Regis Mohawk Tribe Air Quality
Program to evaluate seven PM2.5 products (Jin et al.
2019b). Jin et al. suggest inclusion of satellite remote

sensing improves the estimate of surface PM2.5 in the
remote area, but little gains over urban area. One of the
networks with continuous efforts to evaluate satellite-
derived PM2.5 estimates is the publicly available Surface
Particulate Matter Network SPARTAN (www.spartan-
network.org) (Snider et al. 2015, 2016), which measures
fine particle aerosol concentrations and composition
continuously over multi-year periods at international
sites where AOD is also measured by ground-based
instruments. When validating PM2.5 exposure data
with ground-based observations, one caution is that
the agreement between the fused data fields and
in situ monitor data is related to the weight given to
monitor data in the data fusion algorithm and the
spatial and temporal scales that the in situ monitor
data are assigned to represent. Certain criterion for
data quality control may also cause a sampling bias.

Linking satellite observations of AOD with ground-
level PM2.5 estimates requires accurately understanding
the relationship between aerosol extinction and aerosol
mass abundance, which depends on multiple factors
such as aerosol size distribution, hygroscopic growth
(Brock et al. 2016a; Ziemba et al. 2013) and ambient
relative humidity (Brock et al. 2016b). Targeted
research efforts have been underway to advance under-
standing of these issues (Jin et al. 2019a). For example,
the NASA DISCOVER-AQ aircraft campaign took
place over four urban areas in the U.S. from
2011–2014, and provides extensive profiling of aerosol
optical, chemical and microphysical properties at loca-
tions coincident with ground-based PM2.5 sites. This
multi-platform suite of observations is ideal for analyz-
ing the relationship between satellite column AOD and
ground-level PM2.5 abundances (Crumeyrolle et al.
2014; Jin et al. 2019a).

While we have focused our discussion here onAOD, the
most widely used metric for ambient particulates, there are
other remote sensing instruments that can expand the
value of satellite-based information (some of these are
already in use in the data products presented here). For
example, instruments aboard the Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observations (CALIPSO) pro-
vide vertical profiles of aerosol extinction with limited
spatial coverage, which can be used to detect aerosols
present above the surface (Ford and Heald 2013), and to
correct model biases in the vertical profiles of aerosol
extinction when quality-controlled retrievals are available
(Geng et al. 2015; Li, Carlson, and Lacis 2015; van
Donkelaar et al. 2016, 2013).

Ongoing research efforts have great potential to benefit
spatially continuous PM2.5 data fusion efforts. New geos-
tationary satellites will provide improved temporal cover-
age, as they orbit with Earth, and can track the evolution
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of weather systems, wildfire smoke, urban pollution, and
other factors affect ground-level PM2.5. For example, the
GOES-16 satellite provides AOD at a 2-km horizontal
resolution every 5 min over the continental U.S. and
other areas in its field of view. Improvements in these
data, and other upcoming satellites, hold the potential to
revolutionize the role of satellite data in estimating
ground-level PM2.5. Ongoing improvement in numerical
modeling of the atmosphere, supported by decreasing
computational cost, will also improve these data fusion
products, allowing for higher-resolution model simula-
tions. The rapid rise in low-cost PM monitors also offers
opportunities for obtaining surface PM2.5 information
around the world, if low-cost monitors can be reliably
calibrated.

Publicly available datasets are already supporting
a wide range of air quality and health applications
benefiting from spatially continuous PM2.5 data. With
the increased transparency of data products and
methods, improved dissemination of data to support
GIS mapping software, and plain-language communi-
cation of complex ideas have the potential to vastly
expand the relevance of emerging data for health and
air quality. As new users explore and evaluate these
tools, their feedback to the research community can
inform and improve future activities. A two-way dia-
log between researchers and stakeholders, e.g., the
NASA Health and Air Quality Applied Sciences
Team (HAQAST 2019) and the NASA ARSET train-
ing program (NASA 2019), can be very helpful in
defining research priorities and ensuring outcomes
to serve wider needs.
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