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Abstract 

Background: Air pollution health studies have been increasingly using prediction models for exposure assessment 
even in areas without monitoring stations. To date, most studies have assumed that a single exposure model is cor‑
rect, but estimated effects may be sensitive to the choice of exposure model.

Methods: We obtained county‑level daily cardiovascular (CVD) admissions from the New York (NY) Statewide Plan‑
ning and Resources Cooperative System (SPARCS) and four sets of fine particulate matter  (PM2.5) spatio‑temporal 
predictions (2002–2012). We employed overdispersed Poisson models to investigate the relationship between daily 
 PM2.5 and CVD, adjusting for potential confounders, separately for each state‑wide  PM2.5 dataset.

Results: For all  PM2.5 datasets, we observed positive associations between  PM2.5 and CVD. Across the modeled expo‑
sure estimates, effect estimates ranged from 0.23% (95%CI: ‑0.06, 0.53%) to 0.88% (95%CI: 0.68, 1.08%) per 10 µg/m3 
increase in daily  PM2.5. We observed the highest estimates using monitored concentrations 0.96% (95%CI: 0.62, 1.30%) 
for the subset of counties where these data were available.

Conclusions: Effect estimates varied by a factor of almost four across methods to model exposures, likely due to var‑
ying degrees of exposure measurement error. Nonetheless, we observed a consistently harmful association between 
 PM2.5 and CVD admissions, regardless of model choice.
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Introduction
The association between air pollution and adverse health 
is one of the most well-researched topics in epidemiol-
ogy, with studies spanning different pollutants [1–3], 
timescale of exposure [4–6], and outcomes of interest 
[7–9]. Historically, time-series studies in air pollution 
epidemiology have primarily utilized data from moni-
toring stations for exposure assignment. In the United 

States, this is primarily accomplished using data from the 
Environmental Protection Agency’s (EPA) Air Quality 
System (AQS) database [10]. Although monitors provide 
information on pollutant concentrations, there are strong 
assumptions when working with such data for health 
studies. For example, Bell et  al. [11] noted that because 
the location of monitor systems also depends on regu-
latory compliance and not solely on population density, 
depending on the pollutant, monitor data are not neces-
sarily best suited for public health research. Furthermore, 
monitor locations are by definition points in space and, 
thus, may not adequately capture population exposures 
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in a pre-specified area in the time series analysis (e.g., a 
city) [12, 13].

To reduce exposure measurement error and, further, 
include populations in areas without monitors, there has 
been an increasing use of prediction models in air pol-
lution epidemiology for exposure assessment. These 
prediction models provide outputs with full coverage 
at a much finer spatial resolution than a spatial point, 
which monitors represent, and predict both spatial and 
temporal changes in air pollution. Initially, such mod-
els were simple, and early efforts used largely statistical 
approaches, such as land use regression models and gen-
eralized additive mixed models [14–16]. With increased 
computation capacity and demand for higher spatial and 
temporal resolution, the prediction models have grown 
increasingly sophisticated. Examples include the integra-
tion of remote sensing data, predictions from chemical 
transport models, and more robust methods for higher 
predictive accuracy (e.g., random forests, neural net-
works, and ensemble models) [17–20].

Many research groups are currently developing and 
improving prediction models for exposure assessment 
in epidemiologic studies. However, most epidemiologic 
studies to date use air pollution predictions from a sin-
gle model to assign exposures, although in recent years 
there have been additional efforts to develop statisti-
cal and computational exposure models with exhaustive 
datasets [21, 22]. This is of critical importance because 
the results from these epidemiologic studies are often 
used to inform regulations, but the exposure–response 
functions that are generated from studies using different 
models for exposure assessment are not necessarily com-
parable, both spatially and temporally. Our study aims to 
address this critical knowledge gap by assessing the sen-
sitivity of fine particle  (PM2.5; particles with aerodynamic 
diameter ≤ 2.5 µm) health effect estimates to the choices 
of different models for exposure assessment in a time 
series setting. As a case study, we focus on the associa-
tion between daily  PM2.5 concentrations and cardiovas-
cular disease (CVD)-related hospitalizations in New York 

State (NYS) using a daily time series design at the county 
level. The goal of this paper is not to identify the “best” 
 PM2.5 product, which would depend on the specific goals 
of a particular research project. Rather, we aim to char-
acterize the potential variability in the results of epide-
miologic analyses by using different  PM2.5 products, and 
whether these results will allow us to reach similar or dif-
ferent conclusions in this NYS case study.

Methods
Exposure assessment
We obtained five publicly available, daily  PM2.5 exposure 
products over NYS. These include data from the United 
States EPA’s AQS database, which provides  PM2.5 moni-
toring data in 18 of 62 counties in NYS [10]; daily output 
from the Community Multiscale Air Quality Modeling 
System (CMAQ), an atmospheric chemical transport 
model developed by the EPA to simulate regional air pol-
lution [23]; the Fused Air Quality Surface Using Down-
scaling (FAQSD), which uses a Bayesian space–time 
downscaler model to fuse the AQS measurements with 
CMAQ estimates [23]; a model developed by the United 
States Centers for Disease Control and Prevention’s 
Wide-ranging Online Data for Epidemiologic Research 
(CDC WONDER), which links satellite-derived and 
spatially interpolated ground-based  PM2.5 using linear 
regression [24]; and a product from Emory University, 
which integrates satellite aerosol optical depth (AOD), 
land use data, and meteorological variables in a random 
forest model [19]. In Table 1 we present all of the  PM2.5 
datasets used in this study, with details regarding its 
spatial and temporal coverage and resolution. All  PM2.5 
datasets used in this study provided daily  PM2.5 con-
centrations. More details regarding the  PM2.5 products, 
including validation and comparative statistics, can be 
found in an existing publication [25].

Exposure data were available from 2002 – 2012, except 
from the CDC WONDER model, which was available 
from 2003 – 2011. Daily average temperature and relative 
humidity were obtained from the North American Land 

Table 1 Summary of  PM2.5 datasets used in this study

a Monitoring sites were only available in 18 of the 62 counties in NYS
b Data were only available for 2003 – 2011

Dataset Short Name Spatial 
Coverage

Spatial Resolution Temporal Coverage Reference

US EPA Air Quality  Systema AQS USA Point observations 1999–present [10]

Community Multiscale Air Quality Modeling System CMAQ USA 12 × 12  km2 2002–2012 [23]

Fused Air Quality Surface using Downscaling Fused USA 12 × 12  km2 2002–2012 [23]

AQS and Remote Sensing Merged  PM2.5
b CDC USA 10 × 10  km2 2003–2011 [24]

Statistical Satellite‑Based  PM2.5 Emory NYS 1 × 1  km2 2002–2012 [19]
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Data Assimilation Systems (NLDAS), which provides the 
meteorological data at 1/8th degree grids over the study 
area [26]. We averaged all available grids within a county 
to obtain daily county-level averages for all  PM2.5 prod-
ucts and the corresponding meteorological variables.

Outcome assessment
Daily total cardiovascular hospital admission counts for 
each county were obtained from the New York Depart-
ment of Health’s Statewide Planning and Research Coop-
erative System (SPARCS). SPARCS is a comprehensive 
data reporting system that collects information on hos-
pital admissions and emergency department visits within 
NYS, and includes approximately 98% of all hospitaliza-
tions in non-federal acute care facilities, regardless of 
insurance status [27]. The International Classification of 
Diseases,  9th revision (ICD-9) was used to classify cardio-
vascular hospitalizations (ICD-9 codes 390 – 459).

Columbia University Institutional Review Board 
approval was obtained to conduct the analysis. The same 
board waived the need for informed consent because of 
the public nature of the data.

Statistical analysis
This study is a daily time series analysis conducted at 
the county level. We employed overdispersed Poisson 
regression models to investigate the relationship between 
total CVD-related hospitalizations and same day  PM2.5 
exposure, separately for each set of  PM2.5 concentra-
tions, using all available data. In the models, we included 
smooth functions of calendar time to adjust for season-
ality and long-term trends (using natural cubic splines 
with 4 df per year), as well as indicator variables for day 
of the week. To control for potential confounding by fac-
tors varying across counties, we included indicator vari-
ables for all counties used in the analyses (fixed effects). 
We controlled for potential confounding by weather by 
including smooth functions for daily average temperature 
(natural spline, 3 df) and relative humidity (natural spline, 
3 df) in all models.

We selected the best fitting model and appropriate dfs 
for all non-linear terms included in the model based on 
the quasi-Akaike Information Criterion (qAIC). Specifi-
cally, we tested for calendar time df from 4 to 7 per year, 
and for temperature, and relative humidity, from 3 to 6 
df. We also assessed for potential nonlinearity in all  PM2.5 
products using a natural spline with 3 df and selected the 
model with the best fit using qAIC. For all  PM2.5 prod-
ucts, the linear model yielded a better fit, so we only pre-
sent results from the linear  PM2.5 models.

We first ran analyses with all available information for 
each exposure model. To ensure comparability across all 
 PM2.5 products, we then restricted the analysis to only 

the 18 counties where AQS data were available (“AQS 
only”), and finally to a dataset only with overlapping 
observations across all exposure datasets (“complete-case 
analysis”). We recognize that the results from this last 
set of analyses may have limited generalizability; how-
ever, our aim with this last analysis was to facilitate direct 
comparison across models. To maximize spatial cover-
age when comparing products, we performed a sensitiv-
ity analysis of the last model on a subset excluding AQS. 
Additionally, we also performed sensitivity analyses using 
the average of the same day and the previous day’s  PM2.5 
(lag 0–1) as the exposure window of interest, as well as 
adding federal holidays as a potential confounder.

It is likely that different exposure models perform dif-
ferently in space and time. To assess the impact of varying 
prediction model performance in space and time, thus, 
in a secondary analysis we evaluated potential spatio-
temporal effect modification using all available data. To 
assess effect modification by urban density, we obtained 
data on the urban and rural populations by county in 
NYS from the 2010 United States Census, and included in 
each model an interaction term between  PM2.5 and num-
ber of individuals living in rural areas within each county. 
For effect modification varying by season, we broke each 
year up into four 3-month increments to define seasons: 
spring (March – May), summer (June – August), autumn 
(September – November), and winter (December – Feb-
ruary) and included interaction terms between  PM2.5 and 
season. We assessed statistical significance of the con-
tinuous interaction term (rural population) directly in the 
model, and of the interaction with the categorical season 
variable using a likelihood ratio test by comparing it to a 
model without the interaction term with season.

We present all results in the main analysis as per-
centage change in CVD admission rates per 10  µg/m3 
increase in  PM2.5. To facilitate comparison across  PM2.5 
products, we also present the results of our primary 
analysis per interquartile range in the Supplement. All 
statistical analyses were performed using the R Statistical 
Software, version 3.6.1 (Foundation for Statistical Com-
puting, Vienna, Austria).

Results
Figure 1 shows the  PM2.5 county-wide exposure estimates 
by  PM2.5 product averaged across the entire study period, 
and Table  2 shows the descriptive statistics of the vari-
ables used for the daily models for all available data. The 
average daily  PM2.5 levels in the AQS, CMAQ, FAQSD, 
CDC WONDER, and Emory datasets were 10.7, 8.7, 9.8, 
9.5, and 8.2 µg/m3, respectively. On average, 6.8 inpatient 
CVD admissions occurred per day and county. Descrip-
tive statistics by season, quartiles of rural population, and 
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those used for our complete-case analysis can be found in 
the Supplement (Tables S1–S3).

Table 3 displays the correlation coefficients across the 
different  PM2.5 products. In general, the AQS, Fused, 
CDC, and Emory products were all highly correlated 
with each other, with correlations ranging from 0.83 to 
0.92. The CMAQ product, however, was moderately cor-
related with the other four products, with correlations 
only ranging from 0.49 to 0.61.

Figure  2 shows the percent change in CVD rate per 
10  µg/m3 increase in  PM2.5 across the different  PM2.5 
products and types of analyses. Effect estimates ranged 

Fig. 1 Spatial distributions of average  PM2.5 exposure estimates by  PM2.5 product

Table 2 Descriptive statistics for all 62 counties, unless otherwise noted (2002 – 2012)

a Monitoring sites were only available in 18 of the 62 counties in NYS
b Data were only available for 2003–2011

Variable Mean Min 25% 50% 75% Max % Missing

Daily CVD admission counts per 
county

6.8 0.0 1.0 2.0 5.0 115.0 0.8

Daily  PM2.5 (µg/m3)

  AQSa 10.7 0.0 6.0 9.1 13.6 97.1 75.7

 CMAQ 8.7 0.0 4.2 6.9 11.4 98.2 0.0

 Fused 9.8 0.2 5.6 8.2 12.3 99.7 0.3

  CDCb 9.5 0.0 5.5 8.2 12.1 58.7 18.2

 Emory 8.2 0.4 4.3 6.5 10.1 81.4 2.1

Mean temperature (°C) 9.0 ‑25.3 0.8 9.5 18.1 31.5 0.0

Relative humidity (%) 79.3 24.6 73.8 80.5 86.4 100.9 0.0

Table 3 Pairwise correlation coefficients across  PM2.5 products 
for all available data

AQS CMAQ Fused CDC Emory

AQS 1.00

CMAQ 0.52 1.00

Fused 0.89 0.61 1.00

CDC 0.83 0.49 0.86 1.00

Emory 0.90 0.52 0.92 0.85 1.00
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from 0.23% (95%CI: -0.06, 0.53%) to 0.96% (95%CI: 
0.70, 1.21%). Corresponding numeric estimates are 
presented in Table S4, and results showing the percent 
change in CVD rate per interquartile range increase in 
 PM2.5 are shown in Figure  S2. In general, we obtained 
the highest effect estimates with the tightest confi-
dence intervals when we used CMAQ, while the CDC 
WONDER data yielded the lowest effect estimates. Our 
sensitivity analysis comparing effect estimates on over-
lapping observations across  PM2.5 products excluding 
AQS and using average lag 0–1  PM2.5 exposure yielded 
very similar results to those obtained in the main anal-
ysis (Figures  S2 and S3). Similarly, adding holidays 
as a potential confounder did not change our results 
(Figure S4).

We detected evidence of effect modification by season 
for all  PM2.5 products. Figure 3 shows the results assess-
ing effect modification by season using all available data 
for each exposure model. For most products, we gener-
ally observed higher effect estimates in the autumn and 
winter seasons, reaching as high as a 1.87% increase in 
CVD admissions per 10  µg/m3 increase in  PM2.5 in the 
autumn (for AQS). In comparison, the lowest effect esti-
mates were observed in the spring, some of which were 
even negative.

Figure  4 shows the results assessing effect modifica-
tion by rural population. Results are displayed as the per-
cent increase in CVD admissions for a 10 µg/m3 increase 
in  PM2.5 for each 1000-person increase in the rural 

population of each county. In all but the CMAQ model, 
we detected decreases in the effect estimates as rural 
population increased, i.e., the highest effect estimates 
were observed in urban areas.

Discussion
Using five different sets of  PM2.5 data spanning from 
2002 to 2012, we investigated the relationship between 
daily  PM2.5 and CVD hospital admissions in NYS, and 
found consistently harmful associations across all expo-
sure metrics, albeit effect estimates quantitatively varied 
by a factor of almost four. In subsequent analyses, we 
explored potential spatial and temporal effect modifica-
tion. We found higher effect estimates in the autumn and 
winter and higher effect estimates in more urban areas. 
These results were also largely consistent across exposure 
metrics.

There are a few papers in the literature that evalu-
ate performance across different air pollution models, 
most of which focus on only one or two models. Bravo 
et  al. compared  PM2.5 predictions from a CMAQ simu-
lation to that of ground-based monitors and found that 
CMAQ underestimated  PM2.5, with substantial varia-
tions seasonally [28]. Lee et  al. developed a space–time 
geostatistical kriging model to predict  PM2.5 and com-
pared these predictions to satellite-based  PM2.5 esti-
mates directly from AOD retrievals; they found that the 
kriging model provided more accurate estimates within 
100 km of a monitoring station, while satellite estimates 

Fig. 2 Percent increase in daily CVD admissions rates per 10 µg/m3 for all  PM2.5 products. “All Data” refers to analyses using all available data for 
each exposure model from all 62 counties; “AQS Only” refers to analyses using data only in counties where AQS monitors were available (18 of 62 
counties); “Complete Case” refers to analyses using data without any missingness across all five  PM2.5 products
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were more accurate for locations greater than 100  km 
from a monitoring station [29]. Jin et al. compared seven 
publicly available  PM2.5 products over NYS from 2002 to 
2012, including information from ground-based observa-
tions, remote sensing, and chemical transport models, 
and found that while the products differed in spatial pat-
terns, all showed consistent decreases in  PM2.5 over the 
observed time period [25]. A recent study by Kelly et al. 
comparing nine  PM2.5 exposure models in the United 

States in 2011 found generally consistent  PM2.5 concen-
trations but more variations at finer scales [30].

To date, most existing air pollution epidemiologic 
studies that assign exposure based on prediction mod-
els typically only use data from a single model to assign 
exposures [17, 18, 31]. We are only aware of a few exist-
ing epidemiologic studies that incorporate more than one 
exposure models. Weber et  al. [32] conducted a case-
crossover study over New York City from 2004–2006 
looking at the association between short-term exposure 

Fig. 3 Effect modification by season using all available data

Fig. 4 Spatial effect modification using all available data
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to  PM2.5 and heart failure, utilizing five different expo-
sure models that combine air pollution monitors, aero-
sol optical depth (AOD), and CMAQ. They found that 
effect estimates across the models were similar. McGuinn 
et al. [33] investigated the association between long-term 
exposure to  PM2.5 and cardiovascular disease using dif-
ferent exposure assessment methods. Utilizing station 
monitoring data, two CMAQ models, and two satellite-
based models from 2002 to 2009 for a cohort of patients 
who had undergone a cardiac catherization residing in 
North Carolina, they found nearly equivalent results for 
all exposure assessment methods. Sellier et al. [34] used 
four different exposure models to estimate nitrogen 
dioxide  (NO2) and particulate matter (PM) levels in two 
French metropolitan areas and explored their associa-
tion with infant birthweight in a pregnancy cohort. They 
found consistent estimated health effects for the PM 
products, but less so for the  NO2 products. Wang et al. 
[35] compared exposure estimates and associations for 
 NO2 and various PM sizes based on predictions from a 
land-use regression and a dispersion model, and found 
that health effect estimates did not differ significantly. 
More recently, Gariazzo et al. [36] investigated the effects 
of long-term exposure to PM and  NO2 using four expo-
sure models in a large administrative cohort, and found 
consistent health effect estimates across the different 
exposure assessment models. Our work expands on this 
body of literature and assesses variability in acute CVD 
effect estimates from a time-series analysis using differ-
ent existing exposure models.

In our main analysis, we found harmful associations 
across all models, although the confidence intervals of 
one model crossed the null. However, effect estimates 
fluctuated by a factor of four across the different expo-
sure models. These differences are likely due to varying 
degrees of measurement error across the different mod-
els, as non-differential exposure measurement error in 
time series studies biases effect estimates towards the null 
[13]. The predictive accuracy of all these models likely 
varies in space and time in different ways, which could 
best explain the differences in our results. In the most 
comparable analyses (i.e., “AQS only” and “complete-case 
analyses”), the confidence intervals for all effect estimates 
widely overlap. While the results from the “complete-case 
analysis” may not be generalizable, because this analysis 
focuses on predominantly urban areas, it is the only anal-
ysis that allows direct comparison of the effect estimates 
across the five  PM2.5 products. Therefore, we cannot con-
clude that these models truly yield different estimates.

In our secondary analysis of seasonal effect modifi-
cation, we found higher effect estimates in the autumn 
and winter seasons. With the available information 
that we have, it is not possible to attribute this finding 

to varying impacts of exposure measurement error 
across seasons or to a biological mechanism. One pos-
sible explanation for these findings could be that all 
prediction models perform better during the autumn 
and winter months [25]; smaller amounts of exposure 
measurement error would result in de-attenuation of 
effect estimates. A second explanation could be that in 
NYS, estimated  PM2.5 effects on CVD admissions are 
worse during fall and winter months. Existing literature 
has had mixed findings regarding this topic. Studies by 
Bell et  al. and Hsu et  al. that investigated the effects 
of  PM2.5 on CVD morbidity found highest effect esti-
mates in the winter [37–39]. On the other hand, stud-
ies by Peng et  al. and Dai et  al., who investigated the 
effects of  PM2.5 and mortality, found higher effect esti-
mates in the spring and summer [40, 41]. In our study, 
the higher effect estimates may indicate a higher con-
tribution from more localized particles, such as traffic, 
during the colder months. Traffic has been consistently 
identified as a particularly toxic source of  PM2.5, full of 
combustion products such as black carbon and heavy 
metals [42–44]. Since the mixing height in the winter is 
lower, this will likely result in higher near-surface  PM2.5 
concentrations even if emissions remain the same, as 
they dilute within a smaller near-surface volume.

In comparison to the results for seasonal effect modifi-
cation, the results for effect modification by rural popu-
lation were much more consistent: effect estimates were 
highest in urbanized areas, and decreased as rural popu-
lation increased. The decrease is least pronounced in the 
CMAQ model, where the interaction term was not sta-
tistically significant, and most in the CDC model. Again, 
this finding could be due to two possible explanations. 
First, it is possible that all models except CMAQ have 
higher predictive accuracy in more densely populated 
areas. This would not be surprising, as AQS monitors are 
located near urban centers or more densely populated 
areas and all models except CMAQ were trained on or 
fused with  PM2.5 concentrations measured at monitor-
ing stations [25]. Given that our results for spatial effect 
modification were very similar across all models except 
CMAQ, we would expect these models to perform simi-
larly in NYS counties with limited or no monitoring. Sec-
ond, our findings of effect modification by urbanicity may 
indicate that particle composition in urban areas may be 
more toxic than that of rural areas, which is consistent 
with our interpretation of seasonality as discussed above. 
Similar findings have been found in the literature [45, 
46], also likely because the distribution of potential effect 
modifiers, other than just  PM2.5 composition, is different 
in urban versus rural areas.

Our study has several limitations. First and fore-
most, the results from our analyses may have some 
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comparability issues. As mentioned previously, only 18 
of 62 NYS counties included monitors reporting to the 
AQS database. Consequently, the results using all data 
available from each product are not directly compara-
ble to each other. We ran additional analyses restricting 
to counties with monitoring sites and to no missingness 
across all exposure models. While these results are more 
directly comparable to each other, their overall general-
izability is lower, as they reflect predominantly urban 
areas. Furthermore, in the analyses with restricted obser-
vations, the comparability problem still remains: even 
by looking at only counties with AQS monitors, often-
times these counties may only include a single monitor, 
and its measurements are then uniformly assigned as 
the exposure for the entire county. In comparison, this is 
very different from the  PM2.5 output we obtain from any 
of the exposure models that provide much finer spatial 
resolution.

Second, our analysis is conducted at the county level, 
which does not take full advantage of the fine-scale spa-
tial resolution provided by the modeled exposure data. 
It is possible that the spatial aggregation may have intro-
duced additional biases in the differences among the four 
exposure models used in our analyses, as the differences 
observed across the exposure models could be due to 
two sources: the true differences in predictions generated 
by each model at a specific location and any differences 
introduced as a result of the aggregation. However, our 
goal was to evaluate differences in estimated effects when 
using different exposure models in time series designs, 
which use aggregated health and exposure data. It is pos-
sible that any observed differences in effect estimates in 
our study would be different in other study designs, e.g., 
using individual-level data.

Third, we do not explore potential effects of lagged 
exposure to  PM2.5 on CVD admissions in this study. A 
number of previous studies have found evidence for 
lagged effects for CVD related outcomes, mainly for 
exposure on the same and previous day of the CVD event 
(lag 0–1) and that of the same and previous 3 days com-
bined (lag 0–3) [4, 47–49]. However, the goal of our anal-
ysis was to compare different exposure metrics and not 
to identify critical exposure windows, which we believe 
is beyond the scope of this study. Nonetheless, to facili-
tate comparison to other studies of  PM2.5 and CVD out-
comes, we include the results of lag 0–1 exposure for all 
 PM2.5 products in the Supplement (Figure S3).

Lastly, none of the modeled  PM2.5 data we used were 
perfect: each was built and optimized for different rea-
sons and, thus, could overpredict in certain areas and 
underpredict in others. For example, CMAQ was origi-
nally designed to address regional air pollution prob-
lems across the United States, while the Emory product 

focuses on providing accurate  PM2.5 predictions over 
NYS only. All  PM2.5 products in this analysis (with the 
exception of CMAQ) utilized AQS monitors as part 
of the modeling process, which means that these  PM2.5 
products are likely to provide more accurate estimates 
near monitoring sites, i.e., mainly in urban areas. Fur-
thermore, information on the predictive accuracy of 
these models is not always available, making it difficult to 
conduct a formal comparison of the different  PM2.5 prod-
ucts beyond a qualitative assessment. Our previous work 
has attempted to evaluate these different  PM2.5 products 
using three major criteria: resolution, availability, and 
accuracy. We found that no single product stood out for 
all three criteria, and the choice of  PM2.5 product for the 
purposes of epidemiologic studies should depend on the 
research question of interest [25].

Nonetheless, our aim was not to identify the “best 
product” out of the ones examined. All models exam-
ined have nationwide coverage and our NYS results 
may not generalize to other states. Moreover, the 
choice of model should primarily depend on the study 
design and whether spatial vs. temporal contrasts are 
more important for each specific design and research 
question. Rather, we aimed to characterize the poten-
tial variability in estimated effect estimates in time-
series analyses, using the NYS daily  PM2.5 – CVD 
association as a case study. Based on our results, we 
feel comfortable to conclude that while the point effect 
estimates in our main analysis differ by as much as a 
factor of four, their corresponding confidence inter-
vals were largely overlapping, and that different  PM2.5 
products do indeed reach the same conclusion. We 
also recognize that current health impacts assess-
ments primarily use only point effect estimates from 
epidemiologic studies as inputs into calculations, and 
that the resulting conclusions of such assessments may 
differ drastically depending on the choice of the expo-
sure–response function, which in turn depends on the 
choice of exposure model. Our findings highlight the 
importance of incorporating different sources of uncer-
tainty in the exposure–response curves used in health 
impacts assessments, including uncertainty due to the 
choice of exposure model.

Our study has numerous strengths. We were able to 
investigate the sensitivity of estimated  PM2.5 – CVD 
effects to exposure model choice in short-term epide-
miologic studies. Given the increasing use of modeled air 
pollution data in health studies, our work is critical as it 
provides an example of how much estimated effects may 
vary across exposure models. In previous work, we evalu-
ated how multiple  PM2.5 products perform differently in 
a health impacts assessment [25]; this current work takes 
a step further by evaluating the impact of multiple  PM2.5 
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products on the effect estimates that are used in such 
assessments. Finally, our findings send a strong public 
health message: increased  PM2.5 exposure results in an 
increase in CVD hospitalizations, regardless of the choice 
of exposure model.

Conclusions
In conclusion, we investigated the relationship between 
short-term  PM2.5 exposure and cardiovascular admis-
sions in NYS from 2002 – 2012 using five different  PM2.5 
products and found consistent, harmful associations 
regardless of exposure metric. However, uncertainty 
related with the exposure model selection is not captured 
in the individual estimated effects. Methods are needed 
for improved exposure assessment that minimize error 
and include uncertainty characterization and propaga-
tion into the health models [50].
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