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Abstract

Ambient exposure to fine particulate matter (PM, 5) is one of the top global health concerns. We
estimate the PM, s-related health benefits of emission reduction over New York State (NYS) from
2002 to 2012 using seven publicly available PM, 5 products that include information from ground-
based observations, remote sensing and chemical transport models. While these PM, 5 products differ
in spatial patterns, they show consistent decreases in PM, 5 by 28%—-37% from 2002 to 2012. We
evaluate these products using two sets of independent ground-based observations from the New York
City Community Air Quality Survey (NYCCAS) Program for an urban area, and the Saint Regis
Mohawk Tribe Air Quality Program for a remote area. Inclusion of satellite remote sensing improves
the representativeness of surface PM,, 5 in the remote area. Of the satellite-based products, only the
statistical land use regression approach captures some of the spatial variability across New York City
measured by NYCCAS. We estimate the PM, s-related mortality burden by applying an integrated
exposure-response function to the different PM, 5 products. The multi-product mean PM, s-related
mortality burden over NYS decreased by 5660 deaths (67%) from 8410 (95% confidence interval (CI):
4570-12 400) deaths in 2002 to 2750 (CI: 700-5790) deaths in 2012. We estimate a 28% uncertainty in
the state-level PM, 5 mortality burden due to the choice of PM; 5 products, but such uncertainty is
much smaller than the uncertainty (130%) associated with the exposure-response function.

1. Introduction (Peng et al 2009), and other diseases (Pope and

Dockery 2012). In the past several decades, efforts have

Ambient exposure to fine particulate matter (defined
as particles with less than 2.5 ym in aerodynamic
diameter) is associated with mortality (Dockery et al
1993, Di et al 2017), cardiovascular (Gauderman et al
2004, Pope et al 2002, 2004, 2014), respiratory

been made to reduce the emissions from stationary
and mobile sources in the United States (US) under
federal and state regulations (US EPA 2018a). Between
2000 and 2017, the total anthropogenic emissions over
the US have declined by 83%, 52%, 47%, 27%, and 7%

©2019 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/1748-9326/ab2dcb
https://orcid.org/0000-0002-6895-8464
https://orcid.org/0000-0002-6895-8464
https://orcid.org/0000-0003-0221-2122
https://orcid.org/0000-0003-0221-2122
https://orcid.org/0000-0003-1536-2664
https://orcid.org/0000-0003-1536-2664
https://orcid.org/0000-0003-3807-6927
https://orcid.org/0000-0003-3807-6927
https://orcid.org/0000-0001-5477-2186
https://orcid.org/0000-0001-5477-2186
https://orcid.org/0000-0003-2632-8402
https://orcid.org/0000-0003-2632-8402
https://orcid.org/0000-0002-9161-7086
https://orcid.org/0000-0002-9161-7086
https://orcid.org/0000-0003-4725-2515
https://orcid.org/0000-0003-4725-2515
https://orcid.org/0000-0003-2357-3883
https://orcid.org/0000-0003-2357-3883
https://orcid.org/0000-0003-2801-1003
https://orcid.org/0000-0003-2801-1003
mailto:xjin@ldeo.columbia.edu
https://doi.org/10.1088/1748-9326/ab2dcb
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ab2dcb&domain=pdf&date_stamp=2019-07-31
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ab2dcb&domain=pdf&date_stamp=2019-07-31
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

Environ. Res. Lett. 14 (2019) 084023

for SO,, NO,, CO, primary PM, 5 and non-methane
volatile organic compounds respectively (US EPA
2018a), which led to a 42% decrease in the national
annual average PM, 5 (US EPA 2018b). The reduction
in PM, s is associated with longer life expectancy
(Correia et al 2013, Fann et al 2017), and decrease in
mortality burden over recent decades (Butt et al 2017,
Wangetal 2017, Zhang et al 2018).

To quantify the health benefits of emission reduc-
tion, an important step is to determine the ambient con-
centration of ground-level PM, 5. In general, ambient
PM, 5 is estimated using information from at least one
of the following three categories: ground-based observa-
tions, atmospheric chemical transport model (CTM)
simulations, and remote sensing observations. Early stu-
dies (e.g. Pope et al 2004, Jerrett et al 2005) relied on
ground-based monitors to estimate PM, 5 exposure. For
regions without monitors, PM, 5 distributions can be fil-
led spatially using geostatistical interpolation techniques
such as kriging (Jerrett et al 2005, Fann et al 2017) and
inverse distance weighting (IDW, Lipsett et al 2011).
Another approach is to build relationships between
in situ observed PM, s and land use, meteorological,
and geospatial information using statistical methods
(Henderson et al 2007, Paciorek and Liu 2009, Beckerman
et al 2013, Wang et al 2014, Yanosky et al 2014), which
can resolve the fine-scale PM, 5 spatial gradient, but their
skill depends on the availability of ground-based moni-
tors (Lee et al 2012). CTMs simulate PM,, 5 concentrations
by solving the mass continuity equations for each PM
component given emissions, meteorology, and topo-
graphy. CTMs have been used to estimate PM, 5 exposure
and its historical or future trends nationwide (Wang et al
2017, Zhang et al 2018) and globally (Anenberg et al 2010,
Silva et al 2013, Butt et al 2017), and are especially valuable
for regions where long-term ground-based measure-
ments are sparse. However, CTMs generally have coarse
spatial resolution (> 12 km), limiting their ability to char-
acterize air pollution at local scales (Wang et al 2016), and
are subject to uncertain emissions, meteorology and che-
mical processes.

Space-based remote sensing products offer global
coverage and more than two decades of continuous
observations (Kaufman et al 1997, King et al 1999,
Kaufman et al 2002). Satellite retrieved aerosol optical
depth (AOD), which is a measure of total light extinc-
tion by aerosol, is correlated with the column mass of
aerosols (Wang and Christopher 2003, Koelemeijer et al
2006). Satellite-derived AOD is generally incorporated
into estimates of PM, 5 in surface air in two ways:
(1) forward geophysical approaches that rely on CTMs
to simulate the relationship between PM, 5 and AOD
(e.g. Liuetal 2004, van Donkelaar et al 2006, 2014, 2016);
(2) statistical approaches that either directly build a rela-
tionship between AOD and PM, 5 (e.g. Gupta et al 2006,
Al-Hamdan et al 2009, 2014), or add AOD as a predictor
along with other land use, meteorological variables in
regression models (e.g. Kloog et al 2014, Ma et al 2014,
Just et al 2015). Satellite-derived PM, 5 is valuable for
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filling the spatial gaps over regions with sparse monitors
(van Donkelaar et al 2014, 2016), providing observa-
tional constraints to models (Anenberg et al 2017, Lacey
et al 2017), and improving the predictive power of statis-
tical models (Beckerman et al 2013). However, using
satellite AOD to predict PM, s, especially at shorter time
scales, is challenging due to retrieval uncertainties (Mar-
tin 2008, van Donkelaar et al 2012, Jin et al 2019), miss-
ing data due to the inability to retrieve over cloud and
snow (Gupta and Christopher 2008, Levy et al 2009), and
the dependence of PM, 5-AOD relationship on aerosol
speciation, vertical distributions, and aerosol optical
properties (Chin et al 2002, Gupta et al 2006, Jin et al
2019).

Over the US, several PM, 5 products have become
publicly available, owing to the increasing availability
of observations, both in situ and space-based, and
ever-growing computing capacity. However, most
epidemiological studies, for practical purposes, rely on
a single exposure estimate (e.g. Correia et al 2013,
Girguis et al 2017, Al-Hamdan et al 2018, Zhang et al
2018). Jerrett et al (2017) find a robust association of
PM, s with cardiovascular diseases using multiple
PM, 5 products, but the derived relative risk factor var-
ies. A comparative study by McGuinn et al (2017) over
North Carolina finds the urban-rural difference in the
relative risk varies with exposure assessment methods.
However, objective assessment of the exposure models
has long been challenging, mostly due to the lack of
externally valid observations (Jerrett et al 2017). To
address this gap, we use independent ground-based
observations to evaluate seven publicly accessible
PM, 5 products for both urban and rural environ-
ments over New York State (NYS). These products
include information from ground-based observations,
atmospheric models and satellite remote sensing,
which cover the most commonly used and up-to-date
exposure assessment methods. We then estimate dec-
adal changes in the NYS mortality burden attributable
to PM, 5 exposure using these PM, 5 products, and
assess the extent to which health impact analyses are
sensitive to the choice of exposure datasets for NYS.

2.Data and methods

2.1.PM, 5 products

We collected seven publicly accessible PM, 5 exposure
products for NYS. These products cover the com-
monly used approaches to estimate PM, 5 exposure,
and most of them have been applied to health studies
(table 1). Table 1 provides short names for each PM, 5
product, along with their spatial and temporal cover-
age, resolution, and the data sources used to derive
PM, 5. All products span multiple years from 2002 to
2012, except the CDC WONDER product, which is
only available between 2003 and 2011. We compare
differences in PM, 5 by calculating spatial, temporal
and population weighted spatial root mean squared

2



Table 1. Summary of PM, 5 products and ground-based observations used in this study. The spatial and temporal coverage is based on the coverage of the original dataset.

Example applications

Data source
in health studies
Spatial Temporal Temporal
Dataset Short name coverage coverage Spatial resolution ~ Resolution Reference Insitu Remote Sensing Model
Global Geophysical Dalhousie_GL* Global 1998-2016 0.01° x 0.01° Annual van Donkelaar USEPAAQS®  MODISS, MISR? GEOS-Chem  Crouseetal (2012),
Satellite-Based PM, 5 (PM25 pal_GL) etal (2016) and SeaWIFS® (v9-01-03) Cohenetal (2017)
e AOD
North America Dalhousie_NA" North 2000-2016 0.01° x 0.01° Monthly van Donkelaar USEPA AQS MODIS, MISR? GEOS-Chem None
GeophysicalSatellite- (PM, .5 pai_na) America etal (2019) and SeaWIFS? (v9-01-03)
Based PM, 5 AOD
Statistical Satellite-Based Emory" (PMa.5_gmory) NYS 2002-2012 1 x 1km? Daily Bietal (2019) USEPA AQS MODIS None Girguis et al (2017)
PM, - (MAIAC)° AOD
CMAQ Simulation CMAQ (PM;5 cmaQ) USA 2002-2012 12 x 12km? Daily or Byunand None None CMAQ(v4.7)  Zhangeral (2018)
Hourly Schere (2006)
Fused Air Quality Surface FAQSD (PM, 5 paqsp)  USA 2002-2012 12 x 12km? Daily Berrocal et al USEPAAQS None CMAQ (v4.7)  Breitneretal (2016),
using Downscaling (2010,2011) Haoetal (2016),
Bravo etal (2017)
AQS and Remote Sensing CDC WONDER®! USA 2003-2011 10 x 10km? Daily Al-Hamdan et al USEPA AQS MODISAOD None McClure etal (2017),
Merged PM, 5 (PM,5_cpc) (2014) Al-Hamdan et al
(2017,2018), Loop
etal (2018)
Inverse distance weighed IDW (PM, 5 1pw) NYS 1999-present 0.1°x0.1° Daily USEPA (2018¢) USEPA AQS None None Lipsettetal (2011)
AQSPM, 5
US EPA Air Quality System AQS (PM, 5 aqs) USA 1999-present Point observation ~ Daily (24 h USEPA (2018¢)
average)
St. Regis Mohawk Tribe Air SRMT (PM, 5 _srmt) Northern 2002-2012 Point observation  Daily Benedict (2011)
Quality Program NYS (with gaps)
NYC Community Air NYCCAS (PM, 5 cas) New 2009-2016 Point observation ~ 2-week Matte et al (2013)
Quality Survey York City average

* The short names are mostly given as the institution of the data developers.

" The annual ground-based PM, 5 from the global burden disease (GBD) database is used for the development of global PM, 5. Over the US, the GBD ground-based PM, 5 data are from the US EPA AQS network.
¢ MODIS: MODerate resolution imaging spectroradiometer.

4 MISR: Multi-angle imaging spectroradiometer.

¢ SeaWiFS: sea-viewing wide field-of-view sensor.

f MAIAC: MODIS multi-angle implementation of atmospheric correction.

8 The official dataset included in the Center for Disease Control and Prevention Wide-ranging ONline Data for Epidemiologic Research (CDCWONDER) database.
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differences (RMSD, equations (S1)—(S3) are available
online at stacks.iop.org/ERL/14/084023/mmedia),
and the spatial and temporal correlation coefficients
(Rs and Ry, equations (S4) and (S5)). We define two
metrics to characterize the variations in PM, 5 across
multiple products: the normalized range (equation
(S6)) and the uncertainty (6py;, calculated from the
95% confidence interval (CI) assuming at statistical
distribution; equation (S9)). Detailed methods are
described in the supplementary material.

Satellite retrieved AOD products are used in four
datasets, including the two Dalhousie products
(Dalhousie_GL; V4.GL.02 and Dalhousie_NA; V4.
NA.03), Emory and CDC WONDER, but the methods
used to build the PM, 5-AOD relationship differ. The
Dalhousie products use a global CTM (GEOS-Chem)
to explicitly simulate the PM,s-AOD relationship
(van Donkelaar et al 2016). Although the Dalhousie
products are designed for regional domains or larger,
we evaluate their performance at the smaller spatial
scale of a single state. The Emory product incorporates
satellite AOD as a predictor along with other land use
and meteorological variables to a machine learning
model (random forest) (Bi et al 2019). The CDC
WONDER product builds a linear regression model
between satellite AOD and ground-based PM, s, and
then merges satellite-derived PM, s with spatially
interpolated ground-based PM, s (Al-Hamdan et al
2014). Each of these approaches uses different AOD
products (table 1). Four products include simulated
PM, 5 from global or regional atmospheric chemistry
models. The Dalhousie products use GEOS-Chem
(v9-01-03) to simulate global distributions of PM, 5
and AOD (van Donkelaar et al 2012, Boys et al 2014,
Philip et al 2014). The CMAQ simulation of PM, 5 was
accessed from the US EPA Remote Sensing Informa-
tion Gateway (RSIG) (US EPA, RSIG 2016). The
FAQSD product fuses this CMAQ PM, s with AQS
observations using a space-time downscaling model
(Berrocal et al 2010, 2011). All products except the
CMAQ simulation have been calibrated or merged
with ground-based observations of 24 h average PM, 5
from the EPA Air Quality System (AQS). To assess the
added value of satellite remote sensing and model, we
construct another dataset that spatially interpolates
the daily AQS observations within NYS using IDW.

2.2.Independent ground-based PM, s observations

We use ground-based observations from the NYC
Community Air Quality Survey (NYCCAS) Program
to evaluate these PM, 5 products over urban NYC.
NYCCAS collected integrated samples for every
2-week period in each season from 2009 to 2016 at 150
distributed sites (figure S1) over NYC, which are
chosen to represent a range of land use, traffic intensity
and other characteristics (Matte et al 2013). While
NYCCAS and filter-based AQS data are sampled with
different instruments, Matte et al (2013) found that the
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two-week integrated PM, s cas mirrors PM, s aqs
(R* = 0.96,slope = 1.0).

Over a remote area of upstate NY, we use ground-
based measurements collected by the Saint Regis
Mohawk Tribe (SRMT) Air Quality Program
(Benedict et al 2011). SRMT is located in northern
NYS, situated in the northwest corner of Franklin
County, bordered by St. Lawrence County (figure S1).
There are two SRMT sites that collect hourly PM, 5
samples continuously with a tapered element oscillat-
ing microbalance monitor during our study period of
2002-2012: one located in Saint Lawrence County
(hereafter St. Lawrence Site, Latitude: 44.93 °N Long-
itude: 74.85 "W, AQS code: 360897001), providing
data before August 2004; the other located in Franklin
County (hereafter Franklin Site, Latitude: 44.98 °N
Longitude: 74.69 "W, AQS code: 360337003), provid-
ing data since March 2009. Observations from these
two sites are not included in the 24 h PM, 5 AQS data.
The St. Lawrence Site is 37 km away from the nearest
24 h AQS monitor (code: 360893001), but this AQS
monitor was discontinued in 2009. Thus, there is no
operational AQS site near Franklin Site after 2010, and
the evaluation at the Franklin Site represents areas far
from monitors (figure S1).

2.3. Calculation of the mortality burden due to
PM, 5 exposure

We estimate the mortality burden for PM, s products by
resampling them to a common grid of 0.01° x 0.01°.
We acquire the administrative boundary shapefiles
from the Database of Global Administrative Areas
(GADM), extract the shapefiles for NYS, and rasterize
them to the 0.01° grid, so that each grid cell belongs to
one county. The excess mortality attributable to ambi-
ent exposure to PM, 5 (AMort) is estimated using the
health impact function (Zhang et al 2018):

AMort = y, x AF x Pop, @)

where y, is the baseline mortality rate for specific
diseases; Pop is exposed population age 25 years and
older; AF is the attributable fraction, which is a
function of the relative risk (RR):

AF =1 — 1/RR. 2)

We use the RR factors from the GBD Study 2010,
based on an integrated exposure-response model of
Burnett et al (2014) developed from a meta-analysis:

For C > Cy: RR(C)
=1+ a(l — exp(—y(C — Co)")), 3

For C < Cy: RR(C) =1, 4)

where Cis the annual average ambient concentration of
PM, s; C, is the counter-factual level below which no
additional risk is assumed; «a, <, and 6 are fitting
parameters. We acquired the RRs along with their 95%
Cls for four causes of diseases, including chronic
obstructive pulmonary disease (COPD), ischemic heart
disease (IHD), lung cancer (LC), and cerebrovascular
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With Remote Sensing Without Remote Sensing
2002 2012 2002 FAQSD 2012
16
14

>
Annual Average PM, 5 (ug/m?3)

Figure 1. Annual average PM, 5 estimated from seven PM, 5 products in 2002 and 2012 (2003 and 2011 for CDC WONDER) over
New York State, with zoom-in maps for the New York City and surrounding area (upper-left of each panel). PM, 5 products labeled in
red (left half) include information from satellite remote sensing, and those without remote sensing (right half) are labeled in blue.
Annual average PM, 5 from the AQS and SRMT sites are shown as circles and triangles respectively. The boxplot shows the range of
variation of annual average PM, 5 in 2002 and 2012 (2003 and 2011 for CDC WONDER) over New York State. The box shows the
inter-quartile (IQR), and the whiskers extend to show the rest of the distribution. Outliers (defined as values either 1.5 x IQR or more
above the third quartile or below the first quartile) are shown as single points. The red triangles show the spatial average PM, s.

Dal_NA Dal_GL Emory FAQSD CMAQ IDW CcbC

and ischemic stroke (STROKE) from the Global Burden
of Disease Collaborative Network (2013). We use the
county-level baseline mortality rate from the National
Center for Health Statistics (CDC 2017) from 2002 to
2012 for each specific disease, following the definition of
the GBD study (Lim et al 2012, Zhang et al 2018). We
assign the annual county-level baseline-mortality to grid
cells falling in the county. County-level population
data for age = 25 years are acquired from the CDC
WONDER database. Since the population density varies
spatially within a county, we distribute the county-level
population data for each county by applying the spatial
patterns acquired from the Gridded Population of the
World (GPW, version 4) data from the Socioeconomic
Data and Applications Center (SEDAC). We acquire
GPW data for 2000, 2005, and 2010, and linearly
interpolate them for each year from 2002 to 2012.

3. Results

3.1. Comparison across PM, s products at multiple
scales

Figure 1 compares the spatial distribution of annual
average PM, s from multiple products in 2002 and 2012

(2003 and 2011 for PM, 5 cpc). The state average PM, 5
ranges from 9.2 ug m— (PM, 5 pa na) to 12.1 g m—
(PM,5_pat 1) in 2002, and 5.9 pgm > (PMy.5_gmory) to
7.9 ug m’ (PMy5 paqsp) in 2012 (figure 2(a)). All
products show similar overall patterns with spatial
correlation coefficients (Rgs) ranging from 0.65 to 0.90
(table 2). The Emory product shows sharp gradients of
PM, 5 along the highways, while other products show
more spatially homogeneous patterns. PM, 5 cmaq
shows the largest spread in PM, 5 across NYS, over-
estimating PM, 5 over populous urban NYC and under-
estimating over upstate NY (compared to AQS
observations, circles on figure 1), leading to a positive
bias of population weighted average (PWA) PM, 5
(figure 2(b)), and larger population weighted RMSD with
other products (figure S2(b)). PM, 5 1pw, which only
relies on the ground-based monitors, tends to smear
urban-rural gradients, thus PWA PM, s 1pw is lower
than other products (figure 2(b)). Excluding the IDW
and CMAQ data, the other products show consistent
PWA PM, 5 with lower than 10% differences (table S1).
While the burden-of-disease studies are typically
based on annual average PM, s, building exposure-
response functions for acute effects require the PM, 5
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Figure 2. Time series of PM, 5 in surface air over NYS from multiple PM, s products: (a) annual spatial average, (b) annual population
weighted average (PWA), (c) monthly spatial average in 2011, (d) daily spatial average in June to August 2011 (green area in (b)). The
numbers in (d) are Ry during this period.

Table 2. Spatial /temporal correlation coefficients (Rs/Rr) for different pairs of PM, 5 data. Rsis calculated from the multi-year average
PM, 5 gridded to a common grid of 0.1°x 0.1° resolution (equation (S4)). Ry is calculated from monthly PM, s averaged across NYS
(equation (S5)). The dataset best correlated with independent ground-based observations is highlighted in bold. All products are sampled at
each site for comparison with ground-based observations (i.e. AQS, NYCCAS, SRMT).

Dataset name Dalhousie_GL*  Dalhousie. NA  Emory CMAQ FAQSD IDW CDC WONDER
Dalhousie_ NA 0.90
Emory 0.79 0.86,/0.82
CMAQ 0.82 0.86/0.55 0.85/0.32
Fused 0.80 0.82/0.88 0.81/0.96  0.88/0.50
AQS_IDW 0.78 0.83/0.91 0.79/0.92  0.66/0.53  0.65/0.95
CDC 0.76 0.87/0.77 0.82/0.96  0.69/0.32  0.65/0.93  0.87/0.89
AQS 0.72 0.88/0.97 0.91/0.99 0.76/0.40  0.87/0.98  0.94/1.0 0.81/0.98
Evaluation with independent ground-based observations
NYCCAS 0.1 0.33/0.83 0.62/0.94 0.41/0.42  0.53/0.93  0.58/0.92  0.31/0.82
SRMT®  St.Lawrence N/A 0.81 0.89 0.22 0.74 0.87 0.86
Franklin N/A 0.79 0.77 0.16 0.58 0.60 0.75

data to accurately capture the temporal variability on
shorter time scales. At the monthly scale, the temporal
variabilities of statewide average PM,5 gmorys
PM,s ipw,> and PM,s paqsp are almost identical
(Rt > 0.9, table 2), all closely matching the variability

PM, 5 paqsp and PM, 5 cpc closely match (Rt > 0.8,
figure 2(d)). Over NYC, where ground-based moni-
tors are densely distributed, we find consistency across
all products except for PM, 5 cmaq at all scales, with
opm = 10% for annual average PM, 5 after excluding

of PM2.5_AQS (RT > 097) PMZ.S_Dal_NA and PMZ.S?CMAQ (table Sl)
PM,s5 cpc  show  weaker correlations  with
PMZ.S_Emory) PM:s_pw» and PM; s_raqsp-

PM, 5 cmaq, however, shows weak to no correlation
with all of the other products (Ry < 0.55). We attri-
bute this difference to the seasonal cycle of
PM, s cmaq which differs from other products
(figure 2(c)). At daily scales, PM; 5_gmory> PM2.s_1pws

3.2. Evaluation with independent ground-based
observations

The intensive NYCCAS measurements are ideal for
evaluating whether the PM, s products capture the
spatial patterns of PM, s at the intra-urban scale. Only
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Figure 3. (a) Excess mortality burden attributable to ambient exposure of PM, 5 over NYS from 2002 to 2012 using multiple PM, 5
products (different colors). The error bars represent uncertainty in the integrated exposure-response function (estimated from the
95% confidence intervals of the relative risk factors). (b) The 95% confidence interval on the 11 year ensemble mean mortality burden
due to uncertainty in PM, s estimates (equation (S7)) versus uncertainty in the relative risk factor.

six pixels cover NYC with the ~10 km resolution of
PM, 5 cmaq PMas_paqsps PMas_ipw and PM, s cpe
data, but they show moderate spatial correlation with
NYCCAS data with Rg ranging from 0.31 to 0.58
(table 2). The Emory product has a finer spatial
resolution at 1 km, but it only shows slightly better
spatial correlation with PM, s cas (Rs = 0.62). The
Dalhousie products show weak (PM,s pa nat
Rs = 0.33) to no spatial correlation (PM;5 pa gr:
Rg = 0.1) with PM, 5 _cas, suggesting limited capabil-
ity to capture the detailed spatial variability within
cities, as expected by the coarser resolution inputs to
those datasets. Averaging across all monitors, all
products except PM, s cmaq show strong monthly
temporal correlation with PM;5 cas (Rt > 0.8,
table 2). PM, 5 cmaq is overall biased high, and shows
an opposite seasonal cycle to PM, 5 cas (figure S4).

To evaluate the performance of these PM, s pro-
ducts over upstate NY, where the ground-based moni-
tors are sparse, we use the PM, 5 measurements from
two SRMT sites (hereafter PM, 5 spamt)- All products
correlate more strongly with PM, s spmt at the St.
Lawrence site than the Franklin site. At the St. Lawr-
ence site, PM, 5_gmory correlates best with the observed
PM, 5 srmt (Rt = 0.89, table 2), while PM, 5 cpc has
the smallest RMSDr (1.52 ug m~, figure S2(c)). At the
monthly scale, PM, 5_ipw and PM; 5_gmory are more
consistent with PM, s spmr in the cold season
(November to March), and PM, 5 raqsp is more con-
sistent with PM, 5 spvt from May to September, but
overestimates PM, s in winter by 33%. PM, s pa na
overestimates PM, 5 in winter, and underestimates
in the warm season (figure S4), though it captures
the seasonal cycle and the temporal variability
(Rt = 0.81). At the Franklin site, which is far from the
AQS monitors, we find PM, 5 pa na best captures the
observed temporal variability (Rt = 0.72), though it is
overall biased high by 40%. PM, 5 gmory agrees well
with PM, 5 sgrvt in summer, but is biased high in win-
ter. PM, 5_cmaq shows an opposite seasonal cycle that
peaks in January, leading to the lowest Ry value and

highest RMSDt with PM, 5 gyt among all products
(figure S4).

3.3. Decadal changes in PM, 5 and the associated
mortality burden

Despite the differences in spatial resolution and PM, 5
derivation methods, all products (excluding the
PM, 5 cpc) show significant decreases in statewide
average PM,s by 28% (PM,s paqsp) to 37%
(PM, 5 cmaq) from 2002 to 2012 (figure 1). The
ensemble average PM, 5 over NYS decreased by 33%
from 10.5 in 2002 to 7.0 g m > in 2012. The decreas-
ing trend is widespread across all counties with 28%-—
40% decreases in the ensemble mean of county-level
PM, 5 (figure S5). The decrease in PM, 5 is largely
driven by the decrease in secondary inorganic aerosols
(Boys et al 2014) attributed to anthropogenic emission
reductions (US EPA, 2018a, 2018b). The annual
average PM, s shows larger decreases before 2009, and
then levels off (figure 2(a)). The stabilization is partly
due to the inter-annual variability in meteorology: the
near-surface air temperature, which correlates with
PM, 5 over NYS (Porter et al 2015), is overall warmer
in 2010 to 2012 than other years over NYS. Squizzato
et al (2018) suggest PM, 5 started to decline again over
NYS since 2013.

The consistent decreasing trend provides evidence
that PM,, s-related air quality has improved significantly
over NYS, which should decrease the PM, s-related
mortality burden. We apply the integrated exposure-
response function of Burnett et al (2014) to seven long-
term PM, 5 products. We estimate a 67% decline in the
ensemble mean PM, s-related mortality burden (all
causes combined) from 8410 (rounded to three sig-
nificant figures; 95% CI due to uncertainty in relative
risk factor, 4570—12 400) deaths in 2002 to 2753 (CI:
700-5790) deaths in 2012. Depending on the choice of
PM, 5 products, the estimated annual mortality burden
varies from 6860 (PM, 5 1pws CI: 3630-10 200) to 9990
(PM,5 cmaq CI: 5780-14 300) deaths in 2002, and
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(b) 6pm as a function of distance to the nearest AQS monitor with all products included (blue) and the outlier product PM, 5 camaq
excluded (orange). The calculation is performed on the re-gridded PM, 5 products with 0.1°x 0.1° resolution.
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1740 (PM, 5 _ipw» CI: 162-4520) to 4270 (PMs.5_caiacy
CI: 2080-7010) deaths in 2012. All products show con-
sistent decreases in the mortality burden (figure 3).
Using PM, 5_gmory vields the largest absolute decrease in
mortality burden, by 5990 (CI: 4050-6860) deaths from
2002 to 2012, while using PM, 5 1pw yields the smallest
decrease, by 5130 (CL: 3460-5685) deaths. In terms of
relative change, using PM,s5 gmorpy PMas ipws O
PM, s pana Yvields the largest decrease in mortality
burden (all three at 74%), while using PM, 5_cmaq gives
the smallest decrease (57%). The decrease in mortality
burden combines decreases in PM, 5 with decreases
in baseline mortality rates: the ensemble mean
PM, s-related mortality burden decreases by 46% if the
baseline mortality rate is kept constant at 2002 levels,
and by 36% if PM, 5 concentration is kept constant
(figure S6). Among all causes, IHD is the leading cause
of PM, s-related mortality in NYS, which contributes
87% of the total mortality (figure S7). The IHD related
ensemble mean mortality decreases from 6230 (CI:
3680-8830) deaths in 2002—2030 (CI: 564—4080) deaths
in 2012. NYC, the most populated and polluted region
in NYS, contributes about half of the total PM, s-related
mortality, where the ensemble mean PM, s-related
mortality burden decreases by 62% from 4090 (CI:
2480-5690) deaths in 2002 to 1560 (CI: 525-2730)
deaths in 2012 (figure S8).

4. Discussion

4.1. Which is the ‘best’ PM, 5 product?

Determining which PM, 5 product is the ‘best’ should
take into account at least three criteria—resolution,
availability and accuracy (table S2). The statistical
satellite-based PM, 5 product (PM;s gmory) has the

finest spatial and temporal resolution, which captures
some of the fine-scale patterns of PM, 5 by incorporat-
ing land use and traffic-related information. Our
evaluation with independent observations shows
PM, 5 gmory Dest agrees with ground-based observa-
tions for the urban area (PM,5 cas) and the rural
external SRMT site that is closer to an AQS monitor.
Jerrett et al (2017) compare the PM, s mortality risk
estimated using multiple exposure assessment meth-
ods, and they also find the best fit with statistical land
use regression model. However, PM, 5 gmory is
localized product designed for a small region (e.g. NYS
in this study). The expansion of this product to wider
regions is limited by the availability of ground-based
monitors and consistent ancillary data. PM, 5 paqsp
and PM, 5 _cpc are available for the entire US with daily
resolution but at coarser spatial resolution (~10 km);
we find PM, 5 paqsp performs better over urban areas,
while PM, 5 cpc performs better over remote areas
(table 2). The global Dalhousie product (PM, 5 pal_ L)
while limited in temporal resolution, has the widest
coverage, which is valuable for assessing the
PM, s-related global burden of disease (Cohen et al
2017). The regional Dalhousie product (PM, 5 pa na)
is available monthly for North America, and it best
correlates with the rural SRMT site farther from any
AQS monitor (table 2). Lee et al (2012) compare the
predictive capabilities of the Dalhousie product versus
spatially interpolated PM, s, and they similarly find the
Dalhousie product is more accurate than spatially
interpolated data for areas 100 km or further away from
monitors. In summary, there is no single product that
stands out in all three criteria. Depending on the study
design, the choice of PM, 5 product for epidemiological
studies should reflect a trade-off among these criteria.
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4.2. How do PM, 5 exposure estimates depend on
ground-based measurements?

All of the PM,s products in table 1 (except
PM,s cmaq) either merge AQS observations or use
AQS observations to train the model, and their
temporal variability is thus almost identical to
PM, s aqs at AQS sites (R > 0.97, table 2), indicating
the important role of AQS in driving the temporal
variability of these products. Areas surrounding AQS
monitors typically have smaller exposure uncertainties
than areas where monitors are sparse (figure 4(a)). The
largest uncertainty is found over northern NYS, where
only one AQS monitor is available. We find all
products show better correlation and smaller RMSDt
with PM, 5 srmr at the St. Lawrence site than the
Franklin site, also suggesting higher confidence of
these products over areas closer to AQS monitors.
Figure 4(b) shows dpy as a function of distance to the
nearest AQS monitor, and it increases from 20% for
areas close to AQS monitors (< 20 km) to 31% for
areas far from monitors (> 80 km). The global
geophysical satellite PM, 5 product (PM,5 pa_gr) is
regarded to have the least reliance on ground-based
monitors (van Donkelaar et al 2016). The regional
geophysical satellite-based product (PM, s pa na)s
mainly differs from PM,5 pa g in how biases
are adjusted with ground-based observations. We
find a large difference in spatial patterns between
PM, 5 pana and PM, s pa i, especially in 2002
(figure 1), suggesting calibration with ground-based
monitors is important even in the product with the
least reliance on ground-based monitors. Much of
NYS has sufficient monitors: more than 90% of the
state area contains at least one monitor within 100 km.
PM, 5 products derived with similar approaches are
likely to have larger discrepancies over regions where
ground-based monitors are sparse.

4.3. What s the value of satellite remote sensing and
model simulations?

Our evaluation with independent observations from
SRMT suggests the inclusion of satellite remote sensing
improves the representativeness of PM, 5 in remote
areas (table 2). Of the four satellite-based products, only
the statistical approach (PM, 5_gmory) captures some of
the urban spatial variability measured by NYCCAS. For
the geophysical approach (PM,s py na and
PM, s pa 1), satellite AOD provides observational
constraints over the globe with fine spatial resolution,
which outperforms unconstrained model simulations (
i.e. PM, 5 cmaq), though the model simulated relation-
ship between AOD-PM, 5 often introduces large uncer-
tainties (Jin et al 2019). For the AQS-Remote Sensing
merged approach (PM, 5 cpc), incorporating satellite-
AOD better resolves urban-rural gradients of PM, 5
than the product spatially interpolated from AQS
observations (i.e. PM,s ipw). For the statistical
approach, the contribution from satellite AOD is small,
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less important than land use and meteorological
variables (Bi et al 2019). Bi et al (2019) suggest larger
enhancement of PM, 5 over roads after incorporating
satellite AOD, but the difference is generally small
(<0.2 ug m ). Other studies that use statistical models
to predict PM,; 5 find that models with satellite-based
AOD better predict PM, 5 than without (Beckerman
etal2013,Maetal2014).

Among all products, PM, 5 cmaq has theleast acc-
uracy, whose monthly temporal variability is almost
uncorrelated with the others, suggesting that the direct
use of this CTM without observational constraints in
epidemiological studies will introduce larger uncer-
tainties in exposure estimate, consistent with Jerrett
et al (2017). PM,.5 gaqsp, Which fuses CMAQ with
AQS data, shows a stronger correlation with other
products. It should be noted that we only evaluate one
single model version (CMAQ v4.7) in this study. A
newer version of CMAQ (v5.2) improves the organic
carbon scheme (Appel et al 2017, Murphy et al 2017),
which is expected to improve the simulation of the
seasonal cycle of PM, 5. Despite the uncertainties,
CTMs have the unique advantage of providing infor-
mation on aerosol speciation (Di et al 2016, Li et al
2017, van Donkelaar et al 2019), source attribution
(Lelieveld et al 2015, Silva et al 2016a, Hu et al 2017),
and historical and future trends beyond the period of
observations (Silva et al 2016b).

4.4. Does the choice of PM, 5 products matter for
health impact analysis?

Depending on the choice of PM, 5 products, we show
the estimated mortality burden varies by 43% (equation
(56)). On average, uncertainty in exposure-response
function causes 130% uncertainty (equation (S10)) in
the estimated mortality burden, which is more than a
factor of 4 larger than the uncertainty due to the choice
of PM,5 products (dpy = 28%). Previous studies
similarly suggest uncertainties in exposure-response
functions have larger impacts than uncertainty in
exposure estimates (Silva et al 2013, Ford and Heald
2016). The increasing availability of observations (both
in situ and space-based) is expected to better constrain
the exposure estimate, thus to further reduce uncer-
tainty in PM, 5 estimates. All products show consistent
decreasing trends in PM, 5, and thus decrease in the
PM, s-related mortality burden that varies by 26%
across the different products. At low PM, 5 levels, the
relationship between PM, 5 and relative risk is approxi-
mately linear (Burnett etal 2014, Di etal 2017), and thus
the uncertainty in the exposure-response function
should not strongly influence the long-term trend in
the mortality burden. However, it should be noted that
the integrated model of Burnett et al (2014) relies on
pooling exposure-response functions from studies
using different exposure assessment methods, and
uncertainty in exposure could cause errors in building
the exposure-response functions (Kioumourtzoglou
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etal 2014, Hart et al 2015). Besides, we only consider the
uncertainties in the ambient concentration of PM, s,
but the measured ambient concentration differs from
the true personal exposure, and such difference is
expected to introduce larger biases in the estimates of
relative risks (Zeger et al 2000).

5. Conclusions

We examined seven long-term (2002-2012) publicly
available PM, 5 products over NYS, which cover the
most common exposure assessment methods used in
health studies. We use independent ground-based
observations to evaluate these products over both urban
and rural environments. Among the seven products,
the localized statistical satellite-based PM, 5 data have
the finest spatial and temporal resolution, and best
accuracy over areas with dense monitors, while the
geophysical satellite-based product correlates best with
ground-based PM, 5 at the remote site. Inclusion of
satellite remote sensing improves the representativeness
of PM, s estimates in a remote area. All products,
however, have limited capability to resolve the spatial
patterns of PM, 5 at the intra-urban scale captured by
NYCCAS. While the uncertainty in the state-level PWA
PM,s is small (dpyy <5% after excluding outlier
products), we find larger uncertainties over upstate NY
where ground-based monitors are sparse. We highlight
the importance of ground-based observations to reduce
the uncertainties in PM, 5 exposure estimate, as well as
the independent (i.e. not used to develop the product)
observations for objective assessment.

Despite these uncertainties summarized above, all
products show a significant decrease of PM, 5 by 28%—
37% from 2002 to 2012, which we attribute to the
implementation of emission controls. We conclude
that emission controls have improved public health
across NYS: the multi-product ensemble mean
PM, s-related mortality burden decreased by 5660
deaths (67%) from 8410 (CI: 4570—12 400) deaths in
2002 to 2750 (CI: 700-5790) deaths in 2012. We esti-
mate a 28% uncertainty in the state total mortality
burden due to the choice of exposure assessment
method, much less than the uncertainty in the inte-
grated exposure-response function (130%). Overall,
we conclude that exposure estimates for PM, s using
combinations of ground-based measurements, remo-
tely sensed and modeled data hold substantial pro-
mise, and are rapidly becoming the state of the art for
exposure assessment in epidemiological and health
impact studies.
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