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ABSTRACT: The frequency of wildfires in the western United
States has escalated in recent decades. Here we examine the
impacts of wildfires on ground-level ozone (O3) precursors and the
O3-NOx-VOC chemistry from the source to downwind urban areas.
We use satellite retrievals of nitrogen dioxide (NO2) and
formaldehyde (HCHO, an indicator of VOC) from the Tropo-
spheric Monitoring Instrument (TROPOMI) to track the evolution
of O3 precursors from wildfires over California from 2018 to 2020.
We improved these satellite retrievals by updating the a priori
profiles and explicitly accounting for the effects of smoke aerosols.
TROPOMI observations reveal that the extensive and intense fire
smoke in 2020 led to an overall increase in statewide annual average HCHO and NO2 columns by 16% and 9%. The increase in the
level of NO2 offsets the anthropogenic NOx emission reduction from the COVID-19 lockdown. The enhancement of NO2 within
fire plumes is concentrated near the regions actively burning, whereas the enhancement of HCHO is far-reaching, extending from
the source regions to urban areas downwind due to the secondary production of HCHO from longer-lived VOCs such as ethene.
Consequently, a larger increase in NOx occurs in NOx-limited source regions, while a greater increase in HCHO occurs in VOC-
limited urban areas, both contributing to more efficient O3 production.
KEYWORDS: California wildfires, ozone-NOx-VOC chemistry, nitrogen dioxide, formaldehyde, volatile organic compounds,
remote sensing, TROPOMI

1. INTRODUCTION
Wildfire occurrences have experienced a notable surge over the
past few decades in the western United States.1,2 The rise in
fire-prone weather conditions, attributed to climate change, is
expected to further amplify this trend.3,4 The annual burned
area has increased by more than a factor of 3 over California
from 1985 to 2021, largely due to increasing atmospheric
aridity caused by warming.5 In 2020, California set records for
total area burned (1,723,096 ha).6 The widespread fire smoke
lasted more than 50 days across much of California, reaching
100 days in smoke-prone areas (Figure S1a). The fire season in
2020 led to an unprecedented air quality crisis in the western
U.S., contributing about 43% of PM2.5 from August to
October.7

While the impacts of wildfires on PM2.5 air quality are widely
acknowledged, the extent to which biomass burning emissions
affect gaseous air pollutants, such as ozone (O3) and its
precursors, remains poorly understood. In California, the
national standard for O3 has been frequently violated.

8 O3
production is nonlinearly dependent on the relative availability
of two classes of O3 precursors: oxides of nitrogen (NOx = NO
+ NO2) and volatile organic compounds (VOCs). Biomass
burning is an important source of both NOx and VOCs.

9−12

Model simulation of the impacts of wildfires on O3 chemistry is

subject to uncertainties with emissions,13 plume dynamics,14,15

and chemical processes.16,17 The in situ measurements from
recent Wildfire Experiment for Cloud chemistry, Aerosol
absorption, and Nitrogen (WE-CAN) and Fire Influence on
Regional to Global Environments and Air Quality experiment
(FIREX-AQ) campaigns have advanced our understanding of
the impacts of western U.S. wildfires on reactive nitrogen,18,19

VOCs,11,20 and the O3 chemistry,
21,22 but these field

campaigns were limited to selected fire episodes and mostly
sampled plumes near the source. Over downwind urban areas
with high anthropogenic emissions, the impacts of wildfire
emissions on O3 formation will depend on not only the
characteristics of fire plumes but also the chemical environ-
ment in the recipient areas. In the U.S., anthropogenic NOx
emissions are estimated to have declined by 66% from 2000 to
2020, and anthropogenic VOC emissions have declined by
28%.23 The nationwide emission control has led to a transition

Received: June 8, 2023
Revised: August 23, 2023
Accepted: August 24, 2023
Published: September 13, 2023

Articlepubs.acs.org/est

© 2023 American Chemical Society
14648

https://doi.org/10.1021/acs.est.3c04411
Environ. Sci. Technol. 2023, 57, 14648−14660

D
ow

nl
oa

de
d 

vi
a 

R
U

T
G

E
R

S 
U

N
IV

 o
n 

O
ct

ob
er

 1
8,

 2
02

3 
at

 1
3:

09
:2

7 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaomeng+Jin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Arlene+M.+Fiore"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ronald+C.+Cohen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.3c04411&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04411?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04411?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04411?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04411?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c04411/suppl_file/es3c04411_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04411?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/esthag/57/39?ref=pdf
https://pubs.acs.org/toc/esthag/57/39?ref=pdf
https://pubs.acs.org/toc/esthag/57/39?ref=pdf
https://pubs.acs.org/toc/esthag/57/39?ref=pdf
pubs.acs.org/est?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.est.3c04411?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/est?ref=pdf
https://pubs.acs.org/est?ref=pdf


of the O3 production regime from VOC-limited to NOx-
limited in most U.S. cities except for Los Angeles.24 In-situ
measurements have shown evidence that wildfires alter O3
production regimes near the source,22 and downwind urban
areas.25 As anthropogenic emissions continue to decline, while
wildfire emissions keep rising, how wildfire emissions of the O3
precursors, when transported over long distances and mixed
with anthropogenic sources, influence the urban O3-NOx-VOC
chemistry is an open yet important question.
The full-coverage satellite observations of the O3 precursors

can fill in the spatial gaps of in situ measurements, which
enable us to track the evolution of the O3 precursors from the
source to downwind urban areas. Observations of NO2
tropospheric columns from multiple satellite instruments
have been widely used to constrain NOx emissions from
anthropogenic sources and trends in these emissions.26−28

Formaldehyde (HCHO) is the second most abundant VOC in
wildfire emissions (following acetic acid)11 and is a common
intermediate product of the oxidation of most VOCs in the
troposphere. Previous studies show that HCHO is a good
indicator of organic reactivity when the amount of hydroxyl
radicals is sufficient.29 Satellite retrievals of HCHO have been
used to constrain VOC emissions from anthropogenic,30,31

biogenic sources,32,33 as well pyrogenic sources.34 The ratio of
HCHO to NO2 (HCHO/NO2) reflects the relative availability
total organic reactivity to hydroxyl radicals and NOx.

35,36

Studies have used space-based HCHO/NO2 to inform the O3
production regimes.24,37−39 Jin et al.24 show that the spatial
variability and long-term trends of HCHO/NO2 are largely
determined by the variations in O3 precursor emissions from
anthropogenic and biogenic sources. Unlike these sources that
are persistent and relatively static, the sporadic and transient
nature of wildfires makes it challenging to identify their source
and chemical evolution over wide spatial and temporal scales.
It is not well understood how the transient wildfire emissions
influence the O3 production regimes and the extent to which
satellite HCHO/NO2 can capture such impacts.
The recently launched TROPOspheric Monitoring Instru-

ment (TROPOMI) offers an unprecedented view of NO2 and
VOC-related species (e.g., HCHO and glyoxal) at fine spatial
resolution. TROPOMI has shown an enhanced capability to
quantify NOx emissions over urban areas

40 and fire plumes.12

Using TROPOMI HCHO and glyoxal, Alvarado et al.41

identified long-range transport of HCHO and glyoxal from the
2018 Canadian fires. However, satellite retrievals of NO2 and
HCHO are subject to uncertainties arising from the smoke
aerosol effects and biases in the a priori profiles.34,42,43 While
the aerosol optical effects on satellite retrieval of NO2 are
implicitly considered via cloud correction in current opera-
tional products,44,45 such corrections are less reliable in the
presence of heavy aerosol loading from fires.42,43 The accuracy
of satellite retrievals of NO2 and HCHO columns largely
depends on the a priori knowledge of vertical profile shape
needed for calculating air mass factor (AMF).34,44,46 Improving
the spatial resolution of the a priori profiles could better resolve
the spatial gradients of NO2 observed from space.

47−49 Jin et
al.12 applied NASA’s fine-resolution (0.25° × 0.3125°) GEOS-
CF simulated NO2 as the a priori profile to recalculate AMFs
for NO2 columns near fires, and they showed updating the a
priori profile could resolve the underestimation of satellite-
based NOx emission factors for fires in previous studies.

50

Here we improve TROPOMI retrievals of NO2 and HCHO
specifically for fire plumes by updating the a priori profiles and

explicitly accounting for the optical effects of smoke aerosols
on satellite retrievals. We combine the improved full-coverage
TROPOMI retrievals with NOAA’s Hazard Mapping System
(HMS) smoke product to evaluate the change in NO2 and
HCHO within fire plumes from daily to annual scales. Next,
we focus on selected fire plumes and track the evolution of the
O3 precursors as the plume ages. Finally, we assess how the
fire-induced changes in the O3 precursors impact O3-NOx-
VOC chemistry from the source to downwind urban areas.

2. MATERIALS AND METHODS
2.1. GEOS-Chem Simulations.We used the GEOS-Chem

chemical transport model (v12.7.0),51 driven by the assimi-
lated meteorological fields from the Goddard Earth Observa-
tion System Forward Processing products (GEOS-FP) at 0.25°
× 0.3125° spatial resolution. The temporal resolution of
GEOS-FP meteorological fields is 3 h for 3-D variables and 1 h
for surface quantities and mixing depth. We conducted 3-year
(2018 to 2020) nested GEOS-Chem simulations over
California and surrounding regions (27 °N to 47 °N, 110
°W to 130 °W).52 The boundary conditions are generated
from a global simulation at 2° × 2.5° resolution with a 1-year
initialization. We used the standard tropospheric chemical
scheme that includes detailed NOx-hydrocarbon-aerosol
chemistry.53,54 The NEI2011 inventory is used for U.S.
anthropogenic emissions and scaled annually based on the
national emission trends.23 We used the biomass burning
emissions from the Global Fire Emissions Database (GFED,
Version 4.1) inventory,55 developed based on Moderate
Resolution Imaging Spectroradiometer (MODIS) burned
area products.56 In GFED, the fuel consumption is derived
from biogeochemical models,57 and the combustion efficiency
is estimated as a function of vegetation attributes and soil
moisture.55 The emission factors for NMVOCs and NOx are
compiled from lab experiments and in situ measurements,
which vary by fuel types.58 We distributed 35% biomass
burning emissions in the first ten sigma layers above the
boundary layer, and the other 65% within the boundary
layer.59 The standard GEOS-Chem (v12.7.0) does not include
biomass burning emissions and chemistry of ethene (C2H4),
but C2H4 is a large contributor to organic reactivity in fire
plumes.60 We incorporated the chemistry of C2H4 following
Kwon et al.,61 and it has been incorporated in standard GEOS-
Chem since version 13.3.0. To assess the influence of biomass
burning emissions, we ran three additional simulations that (1)
turn off total biomass burning emissions (SimNo_Fire); (2) turn
off biomass burning primary emissions of HCHO
(SimNo_HCHO); and (3) turn off biomass burning emissions
of C2H4 (SimNo_C2H4).

2.2. TROPOMI Retrievals of HCHO and NO2. The
TROPOMI instrument aboard the Copernicus Sentinel-5
Precursor satellite provides afternoon observations with a
fine spatial resolution (5.5 × 3.5 km2) in the ultraviolet and
visible spectra. We used the daily Level-2 TROPOMI retrievals
of the NO2 tropospheric column (version 2.4) and HCHO
(version 2) total column densities from May 2018 to
December 2020, accessed from NASA’s Goddard Earth
Sciences Data and Information Services Center (https://disc.
gsfc.nasa.gov). The retrieval of NO2 and HCHO columns from
radiance data involves three steps.44,45 First, the total slant
column density is retrieved along the optical path from satellite
radiance data. Second, the tropospheric slant column density is
derived through the subtraction of the total slant column
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density from the stratospheric slant columns.44 For HCHO,
this step is not needed because the HCHO column in the
stratosphere is negligible. The third step is to convert the
tropospheric slant column density to vertical column density
using AMF. The tropospheric AMF can be expressed as62

SAMF AMF ( ) ( ) dG
0

1
=

(1)

AMFG is geometric AMF that is a function of the solar zenith
angle and satellite viewing angle.62 σ represents the sigma
vertical coordinate. ω(σ) is scattering weight that describes the
sensitivity of the backscattered spectrum to the abundance of
NO2 or HCHO at each vertical layer. We calculated the
scattering weights using the Linearized Discrete Ordinary
Radiative Transfer (LIDORT, v2.3),63,64 which explicitly
account for the aerosol optical effects. The aerosol vertical
profiles are obtained from the GEOS-Chem simulations. S(σ)
is a shape factor that represents the normalized a priori vertical
profile of NO2 or HCHO, which is obtained from the GEOS-
Chem base simulations at 0.25° × 0.3125°. We calculated the
ω(σ) for both clear sky and cloudy scenes, and the resulting
ω(σ) for partly cloudy scenes is weighted by the radiance-
weighted cloud fraction.64 We used the cloud pressure and
fraction data included in the standard TROPOMI products,
which are derived from the TROPOMI O2-O2 cloud
product.44 The retrieval of clouds implicitly accounts for the
aerosol effects, and thus explicit correction of aerosol effects
may result in a double-counting of the aerosol impacts on
AMF.42,65,66 Lin et al.42 found that explicitly accounting for
aerosol effects in cloud retrieval results in an overall 20%
reduction in the cloud radiance fraction. Therefore, we
reduced the radiance cloud fraction by 20% in our AMF
calculation to reduce the double-counting aerosol effects on
the retrievals. We selected TROPOMI HCHO and NO2
observations that are of good quality that satisfy the following
criteria: (1) no processing errors; (2) solar zenith angle ≤ 70°;
(3) cloud radiance fraction (before adjustment) < 0.75; (4)
surface albedo <0.2; (5) AMF/AMFG > 0.1. Overall, our
updated TROPOMI NO2 and HCHO retrievals cover 97%
and 88% of the smoky conditions (Figure S1). We interpolated
TROPOMI NO2 and HCHO columns to a regular grid with
0.05° resolution by calculating the area-weighted average.24
2.3. Identification of Fire Plumes. The NOAA’s Hazard

Mapping System (HMS) smoke product is used to identify
potential areas affected by wildfire smoke plumes.67 The HMS
smoke product is derived based on visual classification of
smoke plumes using GOES-16 and GOES-17 ABI true-color
imageries.68 The HMS smoke product has been applied to
evaluate the fire-caused changes in surface PM2.5,

69,70 O3,
71 and

hazardous air pollutants.72 We obtained daily HMS smoke
products and rasterized them to match the spatial resolutions
of gridded TROPOMI NO2 and HCHO. The rasterized smoke
product is used to identify grid cells affected by fire smoke. For
each TROPOMI observation within smoke, we define a
corresponding background value as the satellite observed NO2
or HCHO column for those days without smoke at the same
location (x, y) and temperature (with less than ±0.5 C
difference) in the same year. We only selected the days with
the same temperature to remove the confounding effects of
meteorology. We quantified the overall change of NO2 or
HCHO under fire smoke as the change in the annual mean
TROPOMI NO2 and HCHO columns if the observations

under smoky conditions were replaced with the corresponding
background values.
The smoke product, however, does not differentiate the

smoke plumes from wildfires, agriculture burning, or other
sources. As a proof-of-concept evaluation, we applied this
method to GEOS-Chem simulated HCHO and NO2 columns,
and calculated the corresponding enhancement of NO2 and
HCHO under fire smoke using the HMS product. We then
used a classic model perturbation method that turns off the
biomass burning emissions (SimNo_Fire) in GEOS-Chem, and
we estimated the enhancement as the mean relative difference
in NO2 and HCHO between base and SimNo_Fire (Figure S2).
We found that the smoke-based approach agrees well with the
perturbation approach for both NO2 (R2 = 0.99, MB = +3.4%,
Figure S2a) and HCHO (R2 = 0.99, MB = +5.3%, Figure S2b).
The excellent agreement is due to the strong association
between smoke and biomass burning in California.

2.4. Calculation of Plume Age. To track the evolution of
the O3 precursors from source to downwind areas, we
identified 2096 plumes from 2018 to 2020 with a clear single
fire source. We used the Moderate Resolution Imaging
Spectroradiometer (MODIS) Active Fire products (collection
6) to identify the locations of fires in our study region,73

obtained from NASA’s Fire Information for Resource Manage-
ment System.74 We grouped fire pixels whose distances are
within 20 km as a single fire event, and the center of the fire
was calculated as the mean of fire pixel locations weighted by
MODIS fire radiative power.12 For each smoke plume
identified from NOAA’s HMS product, we searched whether
a single fire event occurred within this plume on the same day
of the smoke. We did not select the smoke plumes associated
with multiple fire locations because such smoke plume is likely
a mixture of fresh and aged plumes. Once the fire events are
identified, we then used NOAA’s Hybrid Single-Particle
Lagrangian Integrated Trajectory (HYSPLIT) dispersion
model to generate forward dispersion maps starting from the
centers of fires,75,76 and estimated the plume age as the arrival
time of plume for areas identified as smoky areas from HMS
smoke product. We used meteorological inputs from North
American Regional Reanalysis (NARR) at 36 km resolution.77

We ran HYSPLIT at an altitude of 1000 m, which is subject to
uncertainties associated with the injection height,15 especially
for extreme fires that can inject large amounts of emissions at
high altitudes of the free troposphere.78 We ran the model at
the same time of day (i.e., 8 AM) for 24 h, which does not
account for the actual start time of fires and fire progression,
but the resulting plume age should be relatively stable if the
wind speed and directions do not vary significantly within
hours.

2.5. Analytical Model for O3 Production. We analyze
the relationship between O3 production and its precursors
using a steady-state analytical model that describes a simplified
O3-NOx-VOC chemistry.79−81 The details of the analytical
model are described in the Supporting Information. The input
to this analytical model includes near-surface NO, NO2, the
total organic reactivity (VOCR, defined as sum of the VOC
concentration weighted by its reactivity with OH), odd
hydrogen radicals (HOx) production rate (PHOx) and
temperature (T). Given PHOx, T and NO:NO2, the O3
production rate can be approximated as a function of NO2
and VOCR, and the sensitivity of O3 production to precursors
can be derived.
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TROPOMI retrieves tropospheric NO2 and HCHO
columns. The relationship between NO2 column and surface
NO2 varies with boundary layer height and NO2 vertical
profiles.38 Here we used GEOS-Chem simulations to derive a
relationship between the tropospheric NO2 column and near-
surface NO2 (i.e., effective boundary layer height) and used the
model simulated mean NO:NO2 fraction to calculate NO.
Figure S3a shows the relationship between the GEOS-Chem
simulated monthly average tropospheric NO2 column and the
near-surface NO2 for September 2020, and we found a good
correlation (R2 = 0.92, slope = 770 m). For VOCR, we also
used GEOS-Chem simulations to derive a relationship between
VOCR and HCHO columns. As shown in Figure S3b, HCHO
columns are reasonably well correlated with VOCR at the
monthly level (R2 = 0.81, slope = 0.5 × 10−15 (molecules/
cm2)−1 s−1). We took the GEOS-Chem simulated PHOx, and
temperature, from the meteorological data (GEOS-FP) used in
GEOS-Chem. We acknowledge that the simple steady-state
model lacks details of the O3-NOx-VOC chemistry in fire
plumes. However, the model provides qualitatively useful
information on the sensitivity of O3 production to its
precursors at the scales of TROPOMI observations.81,82

3. RESULTS AND DISCUSSION
3.1. Updated TROPOMI Retrievals Capture HCHO and

NO2 Plumes from Fires. By recalculating the AMF using
higher-resolution a priori profiles and explicitly accounting for
smoke aerosol effects, our updated TROPOMI NO2 and
HCHO retrievals can better detect and quantify the NO2 and
HCHO plumes from fires. For example, Figure 1 shows the
TROPOMI tropospheric NO2 and HCHO columns over
California from the new (Figure 1a,e) and the operational
products (Figure 1b,f) on September 7, 2020, when several
wildfires occurred across California. TROPOMI detects large
increases of NO2 that reach over 80 × 1015 molecules/cm2
near the fire center of Creek Fire, over a factor of 3 higher than
the NO2 columns in the city center of Los Angeles (Figure 1a).
TROPOMI HCHO columns also peak near the center of
Creek Fire (132 × 1015 molecules/cm2, Figure 1e), and such
high HCHO columns are rarely observed over California or
even globally when no fires are present.45 Panels c and g of
Figure 1 show the difference in NO2 and HCHO columns
between the updated and the operational standard retrievals.
Panels d and h of Figure 1 show the difference if the aerosol
effects are not taken into account (i.e., setting the aerosol
concentration to be zero when calculating the scattering
weight). Compared to the operational standard products
(Figure 1b,f), our TROPOMI retrievals with updated a priori

Figure 1. Maps of the updated TROPOMI retrieval of NO2 tropospheric columns (a) and HCHO columns (e), the operational TROPOMI
retrieval of NO2 tropospheric columns (b) and HCHO columns (f), the difference between the updated and the operational retrievals for NO2 (c)
and HCHO (g), and the difference between the updated TROPOMI retrievals of NO2 (d) and HCHO (h) with versus without correction for
aerosol effects on September 7, 2020 over California. Four big fires that occurred on this day are labeled, and the stars show the center of these big
fires.
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vertical profiles and corrections for aerosol effects exhibit larger
enhancements of NO2 and HCHO near fire centers and thus
show sharper gradients from the source to downwind areas
(Figure 1c,g). For NO2, the enhancement is largely due to the
finer spatial resolution (nested GEOS-Chem at 0.251° ×
0.3125 °) of the a priori profiles than that used in the
operational TROPOMI products (TM5-MP at 1° × 1°).83
Explicitly accounting for aerosol effects in the satellite retrievals
leads to lower NO2 columns than retrievals that assume no
aerosol effects (Figure 1d), consistent with Bousserez.43 For
HCHO, the effects of aerosol vary from fresh to aged smoke,
and we found a large fire-to-fire variability. Overall, explicitly
accounting for aerosol effects leads to higher HCHO columns
near the source, but lower HCHO downwind (Figure 1h),
which in combination with higher-resolution a priori profiles
lead to sharper gradient of HCHO plumes.
3.2. Enhancement of NO2 within Fire Plumes. While

the impacts of fires are generally considered episodic, we found
that the long, intense, and widespread fires that occurred in
2020 can impact NO2 and HCHO across California at seasonal
to annual scales. Figure 2 shows the annual mean enhancement

of TROPOMI NO2 within fire plumes, which is calculated as
the change in annual mean TROPOMI NO2 columns when
each observation on smoky days is replaced by the mean of
NO2 on clear days with the same temperature. Half of
California had an increase of annual mean NO2 of at least 5%,
and 24% of the state’s area had an increase of at least 10%. The
largest increases in NO2 are associated with three big fires:
Hopkins, Doe, and Creek Fires (Figure 2), leading to an
enhancement of annual mean NO2 by over 50% near the
source. Overall, the wildfires resulted in a statewide annual
average NO2 increase of 9% in 2020 (Figure 3a). During the
intensive fire season (August to October), the statewide
average of NO2 increased by 31% under fire smoke (Figure
3a). To get a sense of the magnitude of such increases, the

statewide annual average tropospheric NO2 has decreased by
3% per year in the past few decades based on OMI
observations,26,84 which is about a third of the increase in
NO2 due to fire smoke in 2020. The state average NO2 from
April to June was 11% lower in 2020 than in 2019 (Figure 3a),
due to the significant reduction of anthropogenic emissions
from vehicles during the COVID-19 lockdown.85,86 However,
fewer fires occurred in 2019 than in 2020, leading to almost no
change in NO2 under fire smoke (Figure 3a). During the fire
season from August to October, the state average NO2 was
32% higher in 2020 than that in 2019. As a result, the statewide
annual average of NO2 in 2020 was 8% higher than that in
2019. If we remove the influences of wildfires (i.e., replacing
the NO2 observations on smoky days with the mean NO2 on
clear days at the same temperature), the annual average NO2
would be 1% lower in 2020 than in 2019.
Over urban areas away from the fire source, we found that

the increases of TROPOMI NO2 under smoke are less than
5% (Figure 1a), where the plumes are mostly aged, and the
base NO2 is high. Over urban areas away from the fire source,
we found that the increases of TROPOMI NO2 under smoke
are less than 5% (Figure 1a). The plumes reaching these areas
are mostly aged, and the base NO2 is high due to
anthropogenic emissions. Over urban areas, because of the
COVID-19 lockdown, the annual average NO2 in urban areas
was 5% lower in 2020 than in 2019. The monthly average NO2
was consistently higher in 2019 than in 2020 for all months,
except for September (Figure 3c). This suggests that the effects
of anthropogenic emission reduction outweighed the effects of
fire emissions on NOx in urban areas, although a stronger
reduction of NO2 by 8% would have occurred in the absence of
fires. Ground-based measurements at an urban site downwind
from wildfires (Bakersfield, CA) also show negligible increases
of NOx under fire smoke.

87 Figure 4a shows the relative
median enhancement of NO2 (ΔNO2) with plume age,
calculated from the selected 2096 plumes with clear fire
sources. We found that ΔNO2 is most apparent in fresh
plumes (plume age ≤3 h), reaching nearly 200% within 1 h,
and declines sharply to 27% at 4 h (Figure 4a). In aged plumes
older than 6 h, the enhancement of NO2 is less than 5%. This
is consistent with airborne measurements from WE-CAN
campaign, which suggest that most of the emitted NOx from
fires are lost within a few hours of plume evolution.19 The
rapid decline of NOx, however, is not captured in GEOS-
Chem, which shows a larger enhancement of NO2 columns
and a slower decline of NOx with plume age (Figure S4a).
Several factors may contribute to the discrepancy between
GEOS-Chem and TROPOMI. First, the NOx emission factor
for temperate forest (1.92 g/kg) in GFED is likely to be
overestimated, and recent studies suggest a lower NOx
emission factor of 1.36 to 1.56 g/kg.12,18 Second, the
resolution of GEOS-Chem may be unable to resolve the
observed sharp gradient of NO2 plumes.

88 Third, the chemical
loss of NOx through the formation of HNO3 and PAN may be
underestimated in GEOS-Chem due to insufficient OH,
acetaldehyde (and other larger aldehydes), leading to over-
estimates of NO2 enhancement over downwind areas.

19,89

3.3. Widespread Increase of HCHO within Fire
Plumes. Compared with that of NO2, the enhancement of
HCHO is far-reaching, extending from forest areas to the
downwind cropland and urban regions. Figure 2b shows the
overall enhancement of annual mean TROPOMI HCHO
columns under fire smoke across California in 2020. More than

Figure 2. Annual mean relative enhancement of TROPOMI (a) NO2
and (b) HCHO under smoke in 2020 over California, calculated as
the change in annual mean TROPOMI NO2 or HCHO columns if
each observation on smoky days was replaced by the mean of NO2 or
HCHO under clear days at the same temperature. The locations of
the major fires are labeled as green dots.
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80% of the area of California shows an increase of annual mean
HCHO by at least 5%, and 59% of the area shows an increase
by at least 10%. The maximum increases of HCHO also
occurred near the fire centers of Hopkins, Doe, and Creek
Fires (∼40%). We found a mean enhancement of HCHO of
17% over cropland and 11% over urban areas, which is larger
than the mean enhancement of NO2 (7% over cropland and
3% over urban areas). Overall, TROPOMI observations show
a 16% increase in statewide annual average HCHO columns
under smoke in 2020, and a 39% increase during the intensive
fire season from August to October. The widespread increase
in HCHO led to a shift in the seasonal cycle of HCHO: the

peak of HCHO shifted from July 2019 to September 2020
(Figure 3b). The shift in the seasonal cycle is also observed in
downwind urban areas (Figure 3d).
Next, we focused on selected 2096 plumes with clear fire

sources and track the evolution of HCHO from source to
downwind. In contrast to the TROPOMI NO2 which declines
quickly, ΔHCHO, on the other hand, declines more slowly
with plume age, from around 90% at 1 h to 30% at 6 h (Figure
4a). Overall, ΔHCHO is lower than ΔNO2 in plumes younger
than 3 h but higher than ΔNO2 in plumes older than 3 h
(Figure 4a). We observed a consistent positive ΔHCHO of
more than 20% in the aged plumes older than 6 h (Figure 4a).

Figure 3. Monthly average TROPOMI NO2 (left) and HCHO (right) columns over the entire California area (a, b) and the urban areas of
California (c, d) in 2019 (red) versus 2020 (blue) with and without fire smoke. The monthly average with smoke is calculated from all observations
including smoky and clear days. The average without smoke is calculated by replacing the observations on smoky days with the mean of NO2 or
HCHO on clear days at the same temperature. The table in the upper left corner shows the annual average.

Figure 4. Median relative enhancement of TROPOMI (a) NO2 (blue) and HCHO (orange) and (b) HCHO/NO2 as a function with plume age
for the 2096 selected plumes from 2018 to 2020. The error bars represent the standard deviation that measures the plume-to-plume variability in
the relative enhancement.
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TROPOMI observations of the 2018 Canadian fires also show
enhancement of HCHO for up to 1500 km.41 Consistent with
our findings, in situ measurements of VOCs in an urban area
60 km downwind from the October 2017 northern California
wildfires also show enhancement of HCHO and other
secondary VOCs (e.g., acetaldehyde, maleic anhydride) in
the aged plumes.25 Using airborne measurements of HCHO
and VOCs from the FIREX-AQ field campaign, Liao et al.20

found the dilution-normalized HCHO increases with plume
age in the majority of the plumes sampled.
Since the lifetime of HCHO in the troposphere is generally

within several hours,29 the widespread enhancement of HCHO
in aged plumes must be due to the secondary production of
HCHO from the oxidation of VOCs as the plumes age and are
transported. We used GEOS-Chem simulations to evaluate the
contributions of primary and secondary sources on the
evolution of HCHO along fire plumes. We sampled GEOS-
Chem modeled HCHO columns consistently for those plumes
with clear fire centers. GEOS-Chem and TROPOMI
observations show reasonably good agreement in terms of
the absolute enhancement of HCHO columns within fire
plumes (Figure S4b). Figure 5a shows the GEOS-Chem
simulated and TROPOMI observed ΔHCHO with plume age
normalized by ΔHCHO at the fire center. We focused on the
normalized ΔHCHO rather than the absolute ΔHCHO
because the absolute ΔHCHO is largely affected by the
primary biomass burning emissions, but here we are interested
in the evolution of HCHO. We found that GEOS-Chem can
capture the observed evolution of HCHO with plume age,
both suggesting that ΔHCHO is reduced to 20% after 10 h.
We estimated that the contribution from primary sources is the
difference between Base and SimNo_HCHO in GEOS-Chem, and
the contribution from secondary sources is the difference
between SimNo_HCHO and SimNo_Fire. These simulations show
that HCHO enhancement in aged plumes is mainly due to the
secondary production of HCHO from the oxidation of other
VOCs. Primary emissions of HCHO contribute about 40% of
the total HCHO enhancement in fresh plumes (<3 h), which
reduces to 20% at 6 h. In plumes older than 10 h, more than
95% of the HCHO enhancement is due to secondary
production. This is consistent with the findings from the

FIREX-AQ campaign, which suggest that the secondary
production of HCHO via oxidation of VOCs is the main
driver of the sustained enhancement of HCHO from fires.20

To evaluate which VOC species lead to the HCHO
enhancement in aged plumes, we calculated the HCHO yield
of HCHO-producing VOC species identified in fire plumes
during the WE-CAN wildfire campaign.11 The HCHO yield is
calculated using Framework for 0-D Atmospheric Modeling
(F0AM, version 4.1) with the Master Chemical Mechanism
(version 3.3.1, Supporting Information).90−93 Accounting for
the variations of the emission factors of each VOC, we
multiplied the HCHO yield with the emission factors reported
in Permar et al.,11 which represents the amount of HCHO
produced per unit of mass burned. Figure 5b shows the top 20
contributors to secondary HCHO. We found that C2H4 is the
largest contributor to secondary HCHO, which has both a high
HCHO yield and a high emission factor. Oxidation of C2H4
slowly produces HCHO with peak production around 10 h
downwind (Figure S5). We evaluated the difference between
Base and SimNo_C2H4 as the contribution from biomass burning
C2H4. We found that fire C2H4 contributes about 15% of
HCHO enhancement in aged plumes, but its contribution
decreases with plume age, suggesting that GEOS-Chem may
underestimate the slow production of HCHO from C2H4 in
aged plumes. It should be noted that the biomass burning
emission inventory in GEOS-Chem includes 16 VOC species.
We found that GEOS-Chem does not include 6 of the 10 VOC
species that have the largest emission factor weighted HCHO
yield (Figure 5b). Indeed, we found that GEOS-Chem tends to
underestimate the HCHO enhancement in plumes older than
10 h (Figure 5a), which is likely due to the contribution from
those missing fire VOCs, or inaccurate representation of the
later-generation VOC degradation products. Expansion of
VOC species in GEOS-Chem could improve the representa-
tion of VOC reactivity,60 and it is expected that the relative
contributions of primary emissions to HCHO will be even
smaller if we include more HCHO precursors. Hundreds of
VOC species are known to be present in fire plumes, and many
of them remain unidentified.11 Further identification, speci-
ation, and quantification of fire VOCs from field measure-
ments, and improvement of model representations of fire

Figure 5. (a) GEOS-Chem simulated and TROPOMI observed ΔHCHO with plume age normalized by the ΔHCHO at the fire center. (b) 24-h
HCHO yield from oxidation of VOCs weighted by the corresponding emission factors reported in Permar et al.11 Here we show only the top 20
VOC species. Bars with hatches represent VOC species not included in the biomass burning emission inventory in GEOS-Chem.
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VOCs are needed to further understand secondary production
of HCHO. Also, while we focus on the ozone-NOx-VOC
chemistry, it should also be noted that HCHO near the surface
is a hazardous air pollutant that is a cause of lung and
nasopharyngeal cancer.94 The widespread increase of HCHO
within wildfire plumes will negatively affect human health in
addition to the known health impacts of smoke aerosols.72

3.4. Effects of Fire NOx and VOC Emissions on O3
Production. O3 is nonlinearly dependent on the relative
availability of NOx versus VOCs. We evaluated the changes in
the ratio of TROPOMI HCHO to NO2 (HCHO/NO2) within
fire plumes as an indicator of the effects of fire emissions on
the relative availability of NOx versus VOCs.

24,38,39,95 Figure
4b shows the overall median changes of TROPOMI HCHO/
NO2 within fire plumes (ΔHCHO/NO2) with plume age. We
found a decrease of HCHO/NO2 within fresh fire plumes
(plume age ≤3 h), meaning that the increase of NO2
outweighs the increase of HCHO. In aged plumes older than
3 h, an increase of HCHO/NO2 is found, meaning that the
increase of HCHO outweighs that of NO2.
Under smoke-free conditions, O3 production is generally

NOx-limited in forest regions but tends to be VOC-limited (or
NOx-saturated) over urban areas with high anthropogenic NOx
emissions. Figure 6 shows an isopleth of O3 production as a
function of NO2 and HCHO columns based on the steady-
state analytical model (Section 2.5 and Supporting Informa-
tion). At low NO2 concentrations or high HCHO/NO2 (i.e.,
NOx-limited regime), O3 production increases with NO2, but it
is insensitive to VOC emissions. Fire-induced changes in NO2

are mostly concentrated in the NOx-limited forest regions,
where the O3 production per NOx (i.e., O3 production
efficiency) is high.97,98 That is, for the same amount of increase
in NOx, fire NOx in forests is more efficient at producing O3
than anthropogenic NOx in urban areas: an increase of 1015
molecules/cm2 in tropospheric column NO2 leads to a +7
ppb/h increase in O3 production near the fire, but a decrease
in O3 production of −0.1 ppb/h in urban Los Angeles. In fresh
plumes, both HCHO and NO2 increase, and overall O3
production remains in the NOx-limited regime in the early
afternoon (Figure 6), consistent with findings from the FIREX-
AQ campaign.21,22 In the NOx-limited regime, a small decrease
of HCHO/NO2 is associated with more efficient O3
production,24 but a regime transition from NOx-limited to a
NOx-saturated regime can be found at the plume center,

99

other times of the day,22 or extreme fires with substantial
emissions of NOx,

78 at which O3 production is inhibited by
NOx.
At high NO2 concentrations (i.e., NOx-saturated or VOC-

limited regime), which mostly occurs in urban areas with high
anthropogenic NOx emissions, O3 production increases with
increasing HCHO but decreases with NO2 due to the NOx
suppression of hydroxyl radicals. The fire plumes that reach
urban areas are mostly aged, where we found an increase of
HCHO, which enhances O3 production. For example, the
mean HCHO increased from 10 × 1015 molecules/cm2 to 14 ×
1015 molecules/cm2 over Los Angeles in September 2020,
leading to an increase in O3 production by 7 ppb/h based on
the steady-state model (Figure 6). Because of the emission
controls from power plants and vehicles, the NO2 level has
decreased substantially over Los Angeles, which makes O3
production less sensitive to VOCs.24 The same amount of
HCHO increase would have led to a larger increase in O3
production if NO2 in Los Angeles was at the 2006−2010
mixing ratios. In other urban areas where the NO2 level is
lower, the O3 production regime has made the transition
toward the NOx-limited regime in 2020, meaning that O3
production is almost insensitive to VOCs.24 For example, the
mean NO2 over urban areas of San Bernardino is 6 × 1015
molecules/cm2 without smoke, and the increase of HCHO
within fire plumes (+3 × 1015 molecules/cm2) leads to an
increase of O3 production by 2 ppbv/h. For other urban areas,
the mean NO2 is 4 × 1015 molecules/cm2, and the
enhancement of HCHO within fire plumes leads to an
increase of O3 production by less than 1 ppbv/h. The increase
of HCHO/NO2 within fire plumes further facilitates the
transition from the NOx-saturated to the NOx-limited regime
in urban areas. Similarly, Liang et al.25 found the increase of
fire-related VOCs has shifted the O3 production toward a
NOx-limited regime during the 2017 wildfire season in the San
Francisco Bay Area.
To summarize, using updated TROPOMI retrievals of NO2

and HCHO, we found that wildfires have large impacts on the
production of O3 precursors, leading to an overall increase in
the statewide annual average HCHO and NO2 columns by
16% and 9% in 2020. The enhancement of NO2 within fire
plumes is concentrated in the NOx-limited source regions,
whereas the enhancement of HCHO is far-reaching, extending
from the source regions to VOC-limited urban areas
downwind, both contributing to more efficient production of
O3. While the emissions of O3 precursors from wildfires
increase O3 production, the overall impacts of wildfires on O3
concentration are more complicated. Field studies show a large

Figure 6. Isopleth of the O3 production rate (ppb/h) as a function of
NO2 and HCHO columns based on a steady-state analytical model.
The arrows represent the TROPOMI observed change of the NO2
and HCHO columns within fire plumes in September 2020 for two
cities (Los Angeles and San Bernardino) and three land cover types
(urban, forest, cropland). The land cover type is classified using
MODIS land cover product.96 The arrowhead is the mean NO2 and
HCHO on smoky days, and the arrow tail is the mean NO2 and
HCHO on clear days at the same temperature (background value).
O3 production is calculated from the steady-state simple model by
varying the NOx and VOC reactivities for given values PHOx,
NO:NO2, temperature. PHOx, NO:NO2 are assumed to be constant
as the monthly average GEOS-Chem simulated PHOx, NO:NO2
fraction for California in September 2020. The relationships between
the NO2 column and NO2, VOC reactivity, and HCHO are derived
from GEOS-Chem simulations (Figure S3).
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variability of O3 chemistry from the center to the edge of the
fire plume.21,100 The smoke aerosols from fires are expected to
decrease O3 production by reducing the photolysis rates.

101

The uptake of HO2 radicals onto the aerosol surfaces is
proposed as a sink of radicals under heavy aerosol loading,102

but the photolysis of HONO and HCHO from fires produces
additional HOx.

22,103 While our steady-state model does not
account for all of these effects downwind in cities, we expect
that the increase in HCHO dominates and that the results
presented herein illustrate key features of the urban chemistry
of remote fires. Further investigations of the effects of
precursor emissions and smoke aerosols on O3 production
and the resulting impacts on the spatiotemporal variability of
O3 are warranted.
Here we intend to elucidate the regional-scale impacts of

wildfire smoke on the O3-NOx-VOC chemistry by aggregating
observations from a large number of fire episodes. However,
TROPOMI observations for individual fire episodes are
subject to large uncertainties, and the resolution of TROPOMI
is unable to resolve the spatial variability of the O3 chemistry
within fire plumes. We use the a priori profiles from GEOS-
Chem simulations at 0.25° × 0.3125° resolution, which
significantly reduces the resolution-dependent uncertainties
in the operational products that use global simulations at 1°
resolution,83,88 but improving the spatial resolution of a priori
to a resolution of 0.1° or finer could help further resolve the
spatial gradients of NO2 and HCHO within fire plumes.83,88

The fire injection height is assumed to be constant for all fires
in GEOS-Chem and HYSPLIT, which is a major source of
uncertainty that could lead to errors in simulating the smoke
dispersion, especially for extreme fires.104 Also, satellite
retrievals of NO2 and HCHO are subject to large uncertainty
in cloudy areas,42,43,45 and future work that explicitly accounts
for the aerosol effects in cloud retrieval could help reduce such
uncertainty.42,65 Evaluation of TROPOMI retrievals and
GEOS-Chem simulated a priori profiles with airborne
measurements from field campaigns (e.g., WE-CAN, FIREX-
AQ) and ground-based MAX-DOAS measurements is
warranted to better understand and quantify the uncertainties
of TROPOMI observations under fire smoke. Future work
should conduct a more detailed evaluation of reactive nitrogen
partitioning and VOC composition in GEOS-Chem to
determine the mechanisms affecting the formation and loss
of NO2 and HCHO downwind of fires. In addition, the daily
snapshot from TROPOMI does not resolve the time-of-day
dependence of O3 chemistry in fire plumes.

22 The recently
launched TEMPO instrument on the geostationary orbit will
provide continuous observations of O3 precursors throughout
the day,105 allowing more detailed time evolution of fire
plumes to be observed.
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